PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING FOR SISSA

RECEIVED: May 17, 2006
ACCEPTED: November 13, 2006
PUBLISHED: December 6, 2006

Branes, black holes and topological strings on toric
Calabi-Yau manifolds

Mina Aganagic,” Daniel Jafferis,” Natalia Saulina®

@ University of California
Berkeley, CA 94720, U.S.A.
b Jefferson Physical Laboratory, Harvard University
Cambridge, MA 02138, U.S.A.
E-mail: lnina@math .berkeley. edd, hafferis@schwinger .harvard. edd,

saulina@schwinger.harvard. edy
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1. Introduction

Recently, Strominger, Ooguri and Vafa [l made a remarkable conjecture relating four-
dimensional BPS black holes in type II string theory compactified on a Calabi-Yau manifold
X to the gas of topological strings on X. The conjecture states that the supersymmetric
partition function Zp,.qpne of the large number N of D-branes making up the black hole, is
related to the topological string partition function Z!P as
Zbrane = ’pr‘Qy

to all orders in 't Hooft 1/N expansion. This provides an explicit proposal for what com-
putes the corrections to the macroscopic Bekenstein-Hawking entropy of d = 4, N' = 2
black holes in type II string theory. Moreover, since the partition function Zj,4,. makes
sense for any IV, this is providing the non-perturbative completion of the topological string
theory on X. A non-trivial test of the conjecture requires knowing topological string par-
tition functions at higher genus on the one hand, and on the other explicit computation of
D-brane partition functions. Since neither are known in general, some simplifying circum-
stances are needed.

Evidence that this conjecture holds was provided in [BJ[f] in a special class of local
Calabi-Yau manifolds which are a neighborhood of a Riemann surface ¥. The conjecture
for black holes preserving 4 supercharges was also tested to leading order in [H][H][H] . The
conjecture was found to have extensions to 1/2 BPS black holes in compactifications with
N = 4 supersymmetry [{][EI[H[E] . In [ the version of the conjecture for open topological
strings was formulated.

In this paper we consider black holes on local Calabi-Yau manifolds with torus symme-
tries. These Calabi-Yau manifolds are special in that the topological string amplitudes on
them are computable to all genera. This makes them an ideal ground for testing the OSV
conjecture. Namely, one of the most important aspects of the conjecture is that it provides
a prediction for what the quantum corrections to the Bekenstein-Hawking entropy-area
relation are. These invariably enter at higher (topological) string loops, and in this class
of models they are computable. Moreover the Calabi-Yau manifolds end up involving local
sur faces and this turns out to mean that the corresponding topological string amplitudes
are far more complex than in the local curve cases studied in [2][{].

In the case of local curves in [P][] the D-brane theory involved D4 branes wrapping a
4-cycle in the Calabi-Yau which was a line bundle over the Riemann surface ¥. The theory
on N D4 branes turned out to be equivalent to a variant of the bosonic 2d U(N) Yang-
Mills theory on . The amplitudes of this theory are computable as well, and this allowed
an explicit verification of the OSV conjecture in that case. For the case at hand, it is
natural to consider D4 branes wrapping 4-cycles that are invariant under torus symmetries
of the Calabi-Yau. As long as one wants to preserve the symmetry, a generic such 4-cycle
is a reducible sum of basic invariant divisors. The latter can be compact or not. The
non-compact ones are of the form a line bundle over a Riemann surface, which is in this
case necessarily a P! — these are precisely the theories studied in [[] . The novelty here
is that one typically gets more than one such divisor, so one has to consider intersecting



D4 branes. Like in [fJ] the theory on D4 branes of this kind is equivalent to the 2d qYM
theory on the corresponding Reimann surface, in this case, a P'. Since there is more
than one divisor typically, what one ends up getting is a 2d qYM theory on chains of
P!’s touching at points. The torus symmetries that rotate the P'’s around their equators
require them to intersect over their north and south poles only. The rank of the gauge group
can be different on different P!’s. So the new ingredient relative to [fJ] is understanding of
what happens at the intersections. Clearly, at the intersections, we should have to insert
certain point observables in the quantum Yang-Mills theory, that arise from integrating
out bifundamental matter where the D4 branes intersect. We’ll argue in section 3 that the
contribution of these can be determined by a consistency argument.

The physics of D4 branes wrapping compact 4-cycles is a much harder mathematical
problem without solution at present time. For example, in the case of local P2, we would
need to know the euler characters on moduli spaces of SU(N) instantons on P2, and
to our knowledge, these are known only for N = 2 [[[(] . Here however, we need large
N. Fortunately, understanding these does not turn out to be relevant for the black hole
problem, as we now explain.

Namely, not all the D4 branes are expected to give rise to large black holes in four
dimensions. This is true even in the compact case: Only the D4 branes wrapping 4-cycles
that are the so called “very ample” divisors give rise to black holes with macroscopic
horizons. In the present context, non-compactness of the irreducible divisor is a necessary
condition for it to be ample. Moreover, because the Calabi-Yau manifold is non-compact,
the 4-dimensional planck scale is going to infinity. Only by considering D4-branes which
are also non-compact as in [JJ[f] , one can keep the entropy of the black hole finite. So,
fortune is with us, and in all cases where we expect the D-branes on these manifolds to be
dual to black holes, the D-brane theory is computable.

There is one further subtlety. Because the D-branes are noncompact, different choices
of boundary conditions at infinity on the branes give rise to different theories. Moreover,
fixing the boundary conditions at infinity completely eliminates the moduli space of the
holomorphic cycles that the D4 branes wrap. In the present setting, this means that topo-
logical string amplitudes that receive contributions from holomorphic maps to cycles that
are far removed from the D4 brane, will have no relevance in describing the physics of the D-
branes. Turning this around, a given D4 brane theory cannot be dual to topological strings
on all of X, but only to the topological string on the local neighborhood of the D-brane in
X. This further constrains the class of models that can have non-perturbative completion
in terms of D4 branes and no D6 branes, but includes examples such as neighborhood of a
shrinking P? or P! x P! in X, which we will study in this paper.

The paper has the following organization. In section 2 we review the conjecture of
[ focusing in particular to certain subtleties that are specific to the non-compact Calabi-
Yau manifolds. We describe brane configurations which should be dual to topological
strings on the Calabi-Yau. In section 3 we explain how to compute the corresponding
partition functions Zp.qne. The D4 brane theory turns out to be described by qYM theory
on necklaces and chains of P'. Where the different P!’s intersect, one gets insertions
of certain observables corresponding to integrating out bifundamental matter from the



intersecting D4 branes. The qYM theory is solvable, and corresponding amplitudes can be
computed exactly. In section 4 we present our first example of local P?. We show that the
't Hooft large IV expansion of the D-brane amplitude is related to the topological strings
on the Calabi-Yau, and moreover and show that the version of the conjecture of [] that
is natural for non-compact Calabi-Yau manifolds [{] is upheld. In section 5 we consider
an example of local P! x PL. In section 6 we consider N D-branes on (a neighborhood of
an) Ay type ALE space. We show that at finite N our results coincide with that of H.
Nakajima for Euler characteristics of moduli spaces of U(NN) instantons on ALE spaces,
while in the large N limit we find precise agreement with the conjecture of [[I]] .

2. Black holes on Calabi-Yau manifolds

Consider ITA string theory compactified on a Calabi-Yau manifold X. The effective d = 4,
N = 2 supersymmetric theory has BPS particles from D-branes wrapping holomorphic
cycles in X. We will turn off the D6 brane charge, and consider arbitrary D0, D2 and D4

brane charges.

2.1 D-brane theory

Pick a basis of 2-cycles [C?%] € Hy(X,Z), and a dual basis of 4-cycles [D,] € H4(X, Z),
a=1,...h"(X),
#(D, N C% = ¢,°

This determines a basis for A1t U(1) vector fields in four dimensions, obtained by inte-
grating the RR 3-form C3 on the 2-cycles C® Under these U(1)’s D2 branes in class
[C] € Ho(X, Z) and D4 branes in class [D] € Hyq(X, Z) carry electric and magnetic charges
Q2o and Q4 respectively:

[C]=) @2 [C",  [D]=)_ Q4" [Dal,

We also specify the DO brane charge Q. This couples to the one extra U(1) vector multiplet
which originates from RR 1-form.

The indexed degeneracy
Q(Q4", Q24, Qo)

of BPS particles in spacetime with charges Qo, Q2,, @ can be computed by counting
BPS states in the Yang-Mills theory on the D4 brane [[1]]. This is computed by the
supersymmetric path integral of the four dimensional theory on D in the topological sector
with
1 1
Q0=—2 trE' A F, Qo0 = — trF.
81 D 2 C’g

Since D is curved, this theory is topologically twisted, in fact it is the Vafa-Witten twist
of the maximally supersymetric N’ = 4 theory on D.



2.2 Gravity theory

When the corresponding supergravity solution exists, the massive BPS particles are black
holes in 4 dimensions, with horizon area given in terms of the charges

1
Apn = \/?Cabc Q4°Q4°Q4°|Q|

where Cgp. are the triple intersection numbers of X, and Q) = - %CabQQGQQb.I The
Bekenstein-Hawking formula relates this to the entropy of the black hole

1
Spu = ZABH-

For large charges, the macroscopic entropy defined by area, was shown to agree with the
microscopic one [[L[J][[Z] . The corrections to the entropy-area relation should be suppressed
by powers in 1/Apy (measured in plank units).

Following [IJ], Ooguri, Strominger and Vafa conjectured that, just as the leading
order microscopic entropy can be computed by the classical area of the horizon and genus
zero free energy Fj of A-model topological string on X, the string loop corrections to the
macroscopic entropy can be computed from higher genus topological string on X:

Zym(Qf,¢7,¢°) = [ZP(t7, g5 )| (2.1)

where

Zym(Qa® 9% %) = D Q% Q24,Q0) exp(—Qoy’ — Q2a").
QQ(lyQO

is the partition function of the N' = 4 topological Yang-Mills with insertion of

0 a
exp(—%/trF/\F—Zg—ﬂ/wa/\trF) (2.2)
a

where we sum over all topological sectors.? The Kahler moduli of Calabi-Yau,

t“:/ k+1B

and the topological string coupling constant gs are fixed by the attractor mechanism:
a 1 a - a
"= (5@4 + 10 )gs

gs = 477/‘100

Moreover, since the loop corrections to the macroscopic entropy are suppressed by powers

of 1/N? where N ~ (CopeQ4Q45Q5)"/? [[J] the duality in (B-1)) should be a large N duality
in the Yang Mills theory.

'C%Cha =63,  Cap = CapeQ
?Above, w, are dual to C*, [, wy = 6%.



2.3 D-branes for large black holes

Evidence that the conjecture (B.1) holds was provided in P[] for a very simple class of
Calabi-Yau manifolds. We show in this paper that this extends to a broader class, provided
that the classical area of the horizon is large. This imposes a constraint on the divisor D,
which is what we turn to next.

Recall that for every divisor D on X there is a line bundle £ on X and a choice of a
section sp such that D is the locus where this section vanishes,

sp =0.

Different choices of the section correspond to homologous divisors on X, so the choice of
[D] € Hy(X,Z) is the choice of the first Chern-class of £ (this is just Poincare duality but
the present language will be somewhat more convenient for us) .

The classical entropy of the black hole is large when [D] is deep inside the Kahler cone
of X, [ , i.e. [D]is a “very ample divisor”. Then, intersection of [D] with any 2-cycle

class on X is positive, which guarantees that
Capet®tt° > 0.
Moreover, the attractor values of the Kahler moduli are also large and positive
Re(t*) > 0.

Interestingly, this coincides with the case when the corresponding twisted N' = 4 theory is
simple. Namely, the condition that [D] is very ample is equivalent to

h*9(D) > 0.

When this holds, [[[4],[[L]] , the Vafa-Witten theory can be solved through mass deformation.
In contrast, when this condition is violated, the twisted N = 4 theory has lines of marginal
stability, where BPS states jump, and background dependence.?

In the next subsection, we will give an example of a toric Calabi-Yau manifold with
configurations of D4 branes satisfying the above condition.

2.4 An Example

Take X to be
X =0(-3) — P2

This is a toric Calabi-Yau which has a d = 2 N/ = (2,2) linear sigma model description
in terms of one U(1) vector multiplet and 4 chiral fields X;, i« = 0,...3 with charges
(=3,1,1,1). The Calabi-Yau X is the Higgs branch of this theory obtained by setting the
D-term potential to zero,

X117 + | X + | X5)* = 3[Xo|* + 1

3We thank C. Vafa for discussions which led to the statements here.



and modding out by the U(1) gauge symmetry. The Calabi-Yau is fibered by T2 tori,
corresponding to phases of the four X’s modulo U(1). Above, r; > 0 is the Kahler modulus
of X, the real part of t = fCt k+iB. The Kahler class [k] is a multiple of the integral class
[Dy] which generates H?(X, Z), [k] = r¢ [Dy].

Consider now divisors on X. A divisor in class
[D] = Q [Dy]

is given by zero locus of a homogenous polynomial in X; of charge @) in the linear sigma
model:
D: s9(Xo,...,X3) = 0.

In fact s% is a section of a line bundle over X of degree Q[D;]. A generic such divisor

breaks the U(1)? symmetry of X which comes from rotating the 72 fibers. There are
special divisors which preserve these symmetries, obtained by setting X; to zero,

It follows that [D; 23] = [Dy], and that [Dy] = —3[D;]. The divisor Dy corresponds to the
P2 itself, which is the only compact holomorphic cycle in X.

X1= 0 As explained above, we are interested in D4
branes wrapping divisors whose class [D] is pos-
itive, @ = Q4 > 0. Since the compact divisors
have negative classes, any divisor in this class is
non-compact 4-cycle in X. The divisors have a
moduli space M, the moduli space of charge @
polynomials, which is very large in this case since
X is non-compact and the linear sigma model
contains a field Xy of negative degree. If D were

compact, the theory on the D4 brane would in-

volve a sigma model on Mg. Since D is not
Figure 1: Local P2. We depicted the base

of the T? fibration which is the interior of
the convex polygon in R3. The shaded

compact, in formulating the D4 brane theory
we have to pick boundary conditions at infin-
planes are its faces. ity. This picks a point in the moduli space My,
which is a particular divisor D.

Now, consider the theory on the D4 brane on D. Away from the boundaries of the
moduli space Mg, the theory on the D4 brane should not depend on the choice of the
divisor, but only on the topology of D. In the interior of the moduli space, D intersects
the P? along a curve ¥ of degree @, which is generically an irreducible and smooth curve
of genus g = (Q — 1)(Q —2)/2, and D is a line bundle over it. The theory on the brane is a
Vafa-Witten twist of the maximally supersymmetric NV = 4 gauge theory with gauge group
G = U(1). At the boundaries of the moduli space, ¥ and D can become reducible. For
example, ¥ can collapse to a genus zero, degree Q curve by having s¢ = X IQ , corresponding
to having D = Q - D;. Then D is an O(—3) bundle over P!, and the theory on the D4



brane wrapping D is the twisted N' = 4 theory with gauge group G = U(Q) with scalars
valued in the normal bundle to D.

Both of these theories were studied recently in in precisely this context. In both
cases, the theory on the D4 brane computes the numbers of BPS bound-states of DO and
D2 brane with the D4 brane. Correspondingly, the topological string which is dual to this
in the 1/@Q expansion describes only the maps to X which fall in the neighborhood of D.
In other words, the D4 brane theory is computing the non-perturbative completion of the
topological string on Xp where Xp is the total space of the normal bundle to D in X. It
is not surprising that the YM theory on the (topologically) distinct divisors D gives rise
to different topological string theories — because D is non-compact, different choices of the
boundary conditions on D give rise to a-priori different QFTs.

It is natural to ask if there is a choice of the divisor D for which we can expect the
YM theory theory to be dual to the topological string on X = O(—3) — P2. Consider a
toric divisor in the class [D] = Q[Dy] of the form

D = N1{D1+ NoDsy + N3Dg (23)

where Q = Ny + Ns + N3 for N; positive integers. The D4 brane on D will form
bound-states with D2 branes running around the edges of the toric base, and arbitrary
number of the DO branes. Recall furthermore that, because X has U(1) symmetries, the
topological string on X localizes to maps fixed under the torus actions, i.e. maps that in
the base of the Calabi-Yau project to the edges. It is now clear that the D4 branes on D in
(B.3) are the natural candidate to give the non-perturbative completion of the topological
string on X. We will see in the next sections that this expectation is indeed fully realized.

The considerations of this section suggest that of all the toric Calabi-Yau manifolds,
only a few are expected to have non-perturbative completions in terms of D4 branes. The
necessary condition translates into having at most one compact 4-cycle in X, so that
the topological string on the neighborhood Xp of an ample divisor can agree with the
topological string on all of X. Even so, the available examples have highly non-trivial
topological string amplitudes, providing a strong test of the conjecture.

3. The D-brane partition function

In the previous section we explained that D4-branes wrapping non-compact, toric divisors
should be dual to topological strings on the toric Calabi-Yau threefold X. The divisor D
in question are invariant under 7% action on X, and moreover generically reducible, as the
local P? case exemplifies. In this section we want to understand what is the theory on the
D4 brane wrapping D.

Consider the local P? with divisor D as in (-J) . Since D is reducible, the theory
on the branes is a topological N' = 4 Yang-Mills with quiver gauge group G = U(Np) x
U(N2) x U(N3). The topology of each of the three irreducible components is

D; : O(-3) — P!



In the presence of more than one divisor, there will be additional bifundamental hyper-
multiplets localized along the intersections. Here, D, Do and D3 intersect pairwise along
three copies of a complex plane at X; =0 = Xj, i # j.

As shown in (][] , the four-dimensional twisted A" = 4 gauge theory on

O(-p) — P!

with (R.2) inserted is equivalent to a cousin of two dimensional Yang-Mills theory on the
base ¥ = P! with the action

1 0
S:—/tr@/\F—i——/tr(I)/\wg—i/tr@Q/\wg (3.1)
gs Jx 9gs Jx 29s Jx

where 0 = ¢! /2mg,. The four dimensional theory localizes to constant configurations
along the fiber. The field ®(z) comes from the holonomy of the gauge field around the

/fiber Fle) = ]{g Alz) = 2(2), (3.2)

1
z,00

circle at infinity:

Here the first integral is over the fiber above a point on the base Riemann surface with
coordinate z. The (B.])) is the action, in the Hamiltonian form, of a 2d YM theory, where

B:) = 00 5

is the momentum conjugate to A. However, the theory is not the ordinary YM theory in
two dimensions. This is because the the field ® is periodic. It is periodic since it comes
from the holonomy of the gauge field at infinity. This affects the measure of the path
integral for @ is such that not ® but exp(i®) is a good variable. The effect of this is that
the theory is a deformation of the ordinary YM theory, the “quantum” YM theory [f] .

Integrating out the bifundamental matter fields on the intersection should, from the
two dimensional perspective, correspond to inserting point observables where the P's
meet in the P? base. We will argue in the following subsections, that the point observable
corresponds to

> Trr V! Trr Vi (3.3)
R

where

i () i § A1) i Plit1)
‘/(i) =e' i$ ) V(i+1) =e'

The point observables ®(®) and ®(*1 are inserted where the P1’s intersect, and the in-
tegral is around a small loop on P} around the intersection point. The sum is over all
representations R that exist as representations of the gauge groups on both Pll and P} 11
This means effectively one sums over the representations of the gauge group of smaller
rank.

By topological invariance of the YM theory, the interaction (B.3) depends only on
the geometry near the intersections of the divisors, and not on the global topology. For
intersecting non-compact toric divisors, this is universal, independent of either D or X. In
the following subsection we will derive this result.
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Figure 2: D4-branes are wrapped on the divisors Dy, g = C2 The three boldfaced lines in the
figure on the left correspond to three disks Cy, Cy, Cyyp over which the a, b and (a + b) 1-cycles of
the lagrangian T2 x R fibration degenerate. The cycles of the T2 which are finite are depicted in
the figure on right.

3.1 Intersecting D4 branes

In this subsection we will motivate the interaction (8.J) between D4-branes on intersecting
divisors. The interaction between the D4 branes comes from the bifundamental matter
at the intersection and, as explained above, since the matter is localized and the theory
topological, integrating it out should correspond to universal contributions to path integral
over Dy, and Dpg that are independent of the global geometry. Therefore, we might as well
take D’s, and X itself to be particularly simple, and the simplest choice is two copies of
the complex 2-plane C? in X = C3. We can think of the pair of divisors as line bundles
fibered over disks C, and C}. One might worry that something is lost by replacing ¥ by
a non-compact Riemann surface, but this is not the case — as was explained in [§] because
the theory is topological, we can reconstruct the theory on any X from simple basic pieces
by gluing, and what we have at hand is precisely one of these building blocks.

The fields at the intersection C, ., = Dy, N Dp transform in the bifundamental (M, N)
representations of the U(M) x U(N) gauge groups on the D-branes. We will first argue
that the effect of integrating them out is insertion of

ZTTR exp (z}{ AP Trp exp (z}{ AR (3.4)
R Sy

Sy

where fsl A®) and fsl A®) are the holonomies of the gauge fields on Dy and Dp
b b

respectively around the circle at infinity on the cap Cyyy, i.e. SI} = 0Cy1p, see figure 2. (If
this notation seems odd, it will stop being so shortly).

We will argue this by consistency as follows.* First, note that there is correlation
between turning of certain fluxes on Dy and Dg. To see this note that, if one adds D2
branes along C, 3, the D2 branes have the effect of turning on flux on both Dy, and Dpg.
Consider for simplicity the case where M = 1 = N. The fact that the corresponding fluxes
are correlated is the statement that [ FIL) = i F®) where integrals are taken over the

4We thank C. Vafa for suggesting use of this approach.

,10,



fibers over a point on Cyyp in the divisors Dy, and Dp respectively, where we view Dy, g
as fibrations over C,14. Since Sg = 0C,4p this is equivalent to

]é A<L>:7{ A) (3.5)
st st

a+b a+b

where S} 4 i the one cycle in X that vanishes over Cyy (this cycle is well defined in
X as we will review shortly). This is consistent with insertion of

> exp(in }’{

g AP)Y exp (mj{ ARy, (3.6)
nez

b Sy
because 3551 ALR) and 3551 A@R) are canonically conjugate, (one way to see this is to
b a+b

consider the qYM theory one gets on C,ip. Then insertion of (B.6) implies (B.5) as an
identity inside correlation functions). For general M, N gauge and Weyl invariance imply
precisely (B.4) .

We must still translate the operators that that appear in (B.4) , in terms of operators
®LE) and AR in the qYM theories on C, and C,. This requires understanding of
certain aspects of T fibrations. While any toric Calabi-Yau threefold is a lagrangian 7°
fibration, it is also a special lagrangian 7 x R fibration, where over each of the edges in the
toric base a (p, q) cycle of the T? degenerates. The one-cycle which remains finite over the
edge is ambiguous. In the case at hand, we have C? with two D4 branes, an this provides
a particularly natural choice. Namely, for cycle which is finite over C, chose the cycle that
vanishes over the other edge of Dr, and similarly for C and Dg. This makes the gluing
rules particularly simple.® This is described in figure 2. In the figure, the 1-cycles of the
T? that vanish over Cy, Cy, and Cy,y are S., Sg, S; 1y Tespectively. These determine the
point observables ®’s in the qYM theories on the corresponding disk. The 1-cycles that

remain finite are S}L Sg and S; in order. It follows that

+b? +b)

AL _ j{ AL _ (L) j{ AP _ ),
St st S,

1
b

which justifies (B.3) . In the next subsection we will compute the gYM amplitudes with
these observables inserted.

3.2 Partition functions of qYM

Like ordinary two dimensional YM theory, the qYM theory is solvable exactly [{] . In this
subsection we will compute the YM partition functions with the insertions of observables
B.d) . In [{] it was shown that qYM partition function Z(X) on an arbitrary Riemann
surface X can be computed by means of operatorial approach. Since the theory is invariant
under area preserving diffeomorphisms, knowing the amplitudes for ¥ an annulus A, a pant
P and a cap C, completely solves the theory — amplitudes on any Y can be obtained from

pC2(R)

°In the language on next subsection, this corresponds to inserting ¢ as a propagator to get O(—p)

line bundle over P!.

— 11 —



this by gluing. In the present case, we will only need the cap and the annulus amplitudes,
but with insertions of observables. Since the Riemann surfaces in question are embedded
in a Calabi-Yau, we are effectively sewing Calabi-Yau manifolds, so one also has to keep
track of the data of the fibration. The rules of gluing a Calabi-Yau manifold out of C3
patches are explained in [I§] and we will only spell out their consequences in the language
of 2d qYM.

In the previous subsection, the theory on divisors D;, and Dp in C? was equivalent
to qYM theories on disks C, and Cj, with some observable insertions. These are Riemann
surfaces with a boundary, so the corresponding path integrals define states in the Hilbert
space of qYM theory on S'. Keeping the holonomy U = Pe'$4 fixed on the boundary,
the corresponding wave function can be expressed in terms of characters of irreducible
representations R of U(N) as:

Z(U) = Z Zr TrrU
R

The first thing we will answer is how to compute the corresponding states, and then we
will see how to glue them together. As we saw in the previous section, the choice of the
coordinate fsl A on the boundary is ambiguous, as the choice of the cycle which remains
finite is ambiguous. This ambiguity is related to the choice of the Chern class of a line
bundle over a non-compact Riemann surface, i.e. how the divisors Dy, g are fibered over
the corresponding disks. The simplest choice is the one that gives trivial fibration, and
this is the one we made in figure 2 (this corresponds to picking the cycle that vanishes over
Ch+b»
The partition function on a disk with trivial bundle over it and no insertions is

ZO)U)= Y Sor R TrrU, (3.7)
ReU(N)

Above, C1(R) is the first casimir of the representation R, and Sgrp(N, gs) is a relative
of the S-matrix of the U(N) WZW model

Sro(N,gs) = Y e(w)g™ Rren)wlQton), (3.8)
wESN
where
q = exp(—gs)

and Sy is Weyl group of U(N) and py is the Weyl vector.5
Sewing ¥ and Xp is done by

2(510S) = [ U ZE00) 2ED0) = Y Za(E0) Zr(Sn)
R

5The normalization of the path integral is ambiguous. In our examples in sections 4-6 we will choose it
in such a way that the amplitudes agree with the topological string in the large N limit.
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For example, the amplitude corresponding to ¥ = P! with O(—p) bundle over it and no
insertions can be obtained by gluing two disks and an annulus with O(—p) bundle over it:

Z(A,p)(Ul, UQ) = Z qch(R)/2 eiGCl(R) T?“RUl T?“RUQ (3.9)
ReU(N)
This gives
Z(Pl,p) — Z(SOR)quC’Q(R)/ZeiGCl(R) (310)
R

In addition we will need to know how to compute expectation values of observables in
this theory. As we will show in the appendix B, the amplitude on a cap with a trivial line

i®—in §o1 A

bundle and observable Trg e inserted equals

Z(C, Trg @51 4) Zq202(Q)S (N, gs)TrgrU. (3.11)

where U is the holonomy on the boundary.

It remains to compute the expectation value of the observables in (B.J) in the two-
dimensional theory on C, and Cp. The amplitude on the intersecting divisors Dy, Dg
is

Z(V) (U Uyl = > Vop (M, NYTroU ) Trpu(F)
QeU(M),PEU(N)
(M)
Vop(M,N) = > Sop(M, 95)q2% R Spo(N, gs) (3.12)
REU(M)

In the above, UL is the holonomy at the boundary of Cy, and C.
When M = N, there is a simpler expression for the vertex amplitude in ([3.1J). Using
the definition of Spr (B.§) and summing over R we have

Vpo = 0N (q) g 2C2(P) §p0q 3@ (3.13)

L
2

and where 0(q) = >, cz¢ 2 . This is related to the familiar realization in WZW

models of the relation

STS = (TST)™*
between SL(2,Z) generators S and 7' in WZW models where

Tro = 2R érg, Sep(gss N) = Srp(—gs, N) = Spp(gs, N). (3.14)

The difference is that there is no quantization of the level k here. Even at a non-integer
level, this is more straightforward in the SU(N) case, where the theta function in (B.13)
would not have appeared.
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3.3 Modular transformations

The partititon functions of D4 branes on various divisors with chemical potentials

1 0
S4d:—/trF/\F—|——/trF/\w,
29 Js

turned on, are computing degeneracies of bound-states of Q2 D2 branes and ()9 DO branes
with the D4 branes, where

1
= —/trF/\F Q2 = /trF/\w (3.15)

so the YM amplitudes should have an expansion of the form

2ml
ZTM =3 " Q(Qo, Q2, Qu) exp [ } : (3.16)
40,91
The amplitudes we have given are not expansions in

exp(—1/gs), but rather in exp(—gs), so the existence of the (B.16) expansion is not ap-
parent at all. The underlying A/ = 4 theory however has S duality that relates strong and
weak coupling expansions, so we should be able to make contact with (B.16) .

Since amplitudes on more complicated manifolds are obtained from the simpler ones
by gluing, it will suffice for us to show this for the propagators, vertices and caps. Consider
the annulus amplitude (B.9) Using the Weyl-denominator form of the U(N) characters
TrrU = Ag(u)~! ZwesN(—)“ew(i“)'(R+pN) we can rewrite Z(A,p) as

Z(A,p)(U, V) = Ag(u) 1AH Z Z qg 2 nliu—w(iv))
necZN weSyN

which is manifestly a modular form,” which we can write

Z(A,p)(U,V) = Ag(w) ' Ag(v) ! <gsp> IR 5 (me) (3.17)

meZN weSyN

where in terms of § = e=4m/9: In the above, the eigenvalues U; of U are written as

U; = exp(iu;), and Apg(u) enters the Haar measure:

/dU = /HdulAH(u)Q

Note that, in gluing, the determinant Ay (u)? factors cancel out, and simple degeneracies
will be left over.
Similarly, the vertex amplitude (B.13) corresponding to intersection of N and M D4
branes can be written as (see appendix C for details):
Z(U,V) = Ap(u) ' Ag(0)10M(g) Y gmEmem
mezlw

% Z (_)w Z en(-w(iu)+iv—gs(PN—PA1)) (318)

wESN neZN

w2 . .
"Recall, 0(7,u) = (775’7’)_%6_”"79(7%, 2), where 0(1,u) =3, eitn? g2miv,
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Figure 3: Local P2, depicted as a toric web diagram. The numbers of D4 branes wrapping the
torus invariant non-compact 4-cycles are specified.

where v, pps are regarded as N dimensional vectors, the last N — M of whose entries
are zero. We see that Z(U, V) is given in terms of theta functions, so it is modular form,
its modular transform given by

o —M/2 ~
ZU,V) = A Ap@) ™ () 77 M@
Y
Z (j—%(m+iv/27r)2

mezZM
Z (_)w Z en(-w(iu)-l-iv—gs(pN—PM)) (319)
wESN nEZN

In a given problem, it is often easier to compute the degeneracies of the BPS states from
the amplitude as a whole, rather than from the gluing the S-dual amplitudes as in (B.19) .
Nevertheless, modularity at the level of vertices, propagators and caps, demonstrates that
the 1/gs expansion of our amplitudes does exist in a general case.

4. Branes and black holes on local P2.

We will now use the results of the previous section to study black holes on X = O(—3) —
P2. As explained in section 2, to get large black holes on R*! we need to consider D4 branes
wrapping very-ample divisors on X, which are then necessarily non-compact. Moreover, the
choice of divisor D that should give rise to a dual of topological strings on X corresponds
to

D = N1D; + NoDy + N3Ds

where D;, ¢ = 1,2, 3 are the toric divisors of section 2.

Using the results of section 3, it is easy to compute the amplitudes corresponding to
the brane configuration. We have N1 > No > N3 D4 branes on three divisors of topology
D; = O(—3) — PL. From each, we get a copy of quantum Yang Mills theory on P! with
p = 3, as discussed in section 3. From the matter at the intersections, we get in addition,
insertion of observables (B.J) at two points in each P!.
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All together this gives:

302(Ri)
2

ZqYM = Z V'Rz’Rl (N2’ Nl) VR3732 (N?n N2) VRSRI N?n Nl eiGiCI(Ri)

Ri€U(N;)

H:jw

(4.1)
Note that in the physical theory there should be only one chemical potential for D2-
branes, corresponding to the fact that Hy(X,Z) is one dimensional. In the theory of the
D4 brane we Ho(D,Z) is three dimensional, generated by the 3 P!’s in D — the three
chemical potentials 8; above couple to the D2 branes wrapping these. While all of these D2
branes should correspond to BPS states in the Yang-Mills theory, not all of them should
correspond to BPS states once the theory is embedded in the string theory. Because the
three P!’s that the D2 brane wrap are all homologous in Hy(X,Z),

[Pl —[P5] ~0,  [P3]—[P5]~0

there will be D2 brane instantons that can cause those BPS states that carry charges in
Hy(D,Z) to pair up into long multiplets. Decomposing Hy(D,Z) into a Hy(D,Z)!l =
Hy(X,Z) and Hy(D,Z)*, it is natural to turn off the the chemical potentials for states
with charges in Hy(D,Z)*. This corresponds to putting

0; =0, i=123.

For some part, we will keep the #-angles different, but there is only one 6 natural in the
theory.

The normalization « of the path integral is chosen in such a way that Z,yjs has
chiral /anti-chiral factorization in the large N; limit (see 4.6 and 4.10 below).

N N Np+No+N3)62 3
(pNQJrﬁ) 72(p?\,3+—3) (N1+No+N3) (N1+Ng+N3)

a=q q 247 ¢ 69s q 72

The partition function simplifies significantly if we take equal numbers of the D4 branes
on each D;,
N;=N, i=1,2,3

since in this case, we can replace (B.19) form of the vertex amplitude with the simpler
(B-13) , and the D-brane partition function becomes

Zayy = a6V (q) > Srir (95 N) Spyry (95 N) Spor, (95, N)
R1,R2,R3€U(N)

3
Co(R;i) .o, )
%) F R 0
j=1

In the following subsections we will first take the large N; limit of Z,y s to get the
closed string dual of the system. We will then use modular properties of the partition
function to compute the degeneracies of the BPS states of D0-D2-D4 branes.
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4.1 Black holes from local P2

According to the conjecture of [fl] (or more precisely, its version for the non-compact Calabi-
Yau manifolds proposed in [B] ) the large N limit of the D-brane partition function Zy,qne,
which in our case equals Z;y s, should be given by

Zoy (D, g5, 0) = Y |27 (t,95)

«

where )
t= §(N1 + NQ + Ng)gs — 10

since [D] = (N1 + Ny + N3)[D¢] where [D;] is dual to the class that generates Ho(X,Z).
In the above, the two expressions should equal up to terms of order O(exp(—1/gs)), hence
the “approximate” sign. The sum over « is the sum over chiral blocks which should
correspond to the boundary conditions at infinity of X. More precisely, the leading chiral
block should correspond to including only the normalizable modes of topological string on
X, which count holomorphic maps to P2, the higher ones containing fluctuation in the
normal direction [{][f]] . We will see below that this prediction is realized precisely.

The Hilbert space of the qYM theory, spanned by states labeled by representations R
of U(N), at large N splits into

HYM ~ oy Hf @ H,

where 'Hl+ and H,; are spanned by representations Ry and R_ with small numbers of boxes
as compared to N, and ¢ is the U(1) charge. Correspondingly, the ¢YM partition function
also splits as

Zoym =Y 2} 7,
l

where ZgjE are the chiral and anti-chiral partitions. We will now compute these, and show
that they are given by topological string amplitudes.

i. The N; = N case.

We'll now compute the large N limit of the D-brane partition function (f.g) for N; = N,
i=1,2,3. At large N, the U(N) Casimirs in representation R = R, R_[(g] are given by

C2(R) = kpy + k- + N(|Ry| +|R-[) + NEg* + 2(g(|Ry| — |R-|),
Ci(R) = Nlg+|Ry| - |R| (4.3)

where

and |R| is the number of boxes in R.
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The S-matrix Skg is at large N given in [f]

(24 N _ _
q (p2+24)SRQ(_957N) = M(q 1)77(q 1)N(_)\R+\+IR7I+\Q+I+\Q7I

NertQ gfQ(|Rel ~1B-[) R (1Qq |- |Q-) [ = HEL O]

xq

R, THER_ . .
><q7+2 Zq—NIP\(_)\P|CQ1R+P(Q)CQZR_PT(q). (4.4)
P

The amplitude Crpg(q) is the topological vertex amplitude of [[F] .5 In (E4) M(q)
and 7(q) are MacMahon and Dedekind functions.
Putting this all together, let us now parameterize the integers ¢, as follows

3€ZER1—|—€RQ+ER3, 3n:£R1_€R35 3k:€RQ—ER3.
It is easy to see that the sum over n and k gives delta functions: at large NV
Zyy i (0,95) ~ 5(N(01 = 03)) S(N (02 — 0)) x Z'3i" (0, g5) (4.5)

where 0; = 6 in the finite piece. As we will show in Sec. 4.2 there is the same J-
function singularity as in the partition function of the bound-states of N D4 branes. There
it will be clear that it comes from summing over D2 branes with charges in Hy(X, D), as
mentioned at the beginning of this section. The finite piece in ([L.§) is given by

- s ~
ZJ;,"AZQ(N, 0,g5) = Z Z (—)Zi=1 |P1‘Z;17P2,P3(t + mgs)Z;F7Pg7Pg(t —mgs). (4.6)
meZ P1,P>,P3

The chiral block in ([.6)) is the topological string amplitude on X = O(—3) — P2,

Z]—L_l,P27P3(t) = ZO(gS7t)e_t0 ZZ‘PZI (47)
Z et 2ilftilgainn; Crrr,pr(9) Crr rypr (@) Cprp,pr(9)
R17R27R3
where tyg = —%N gs and the Kahler modulus t is (we will return to the meaning of ¢
shortly):
3N
p= 2295 g
2

More precisely, the chiral block with trivial ghosts P; = 0,

Z3o0(t9s) = Z'(t, 95)

is exactly equal to the perturbative closed topological string partition function for X =
O(—-3) — P2 as given in [[§] . This exactly agrees with the prediction of [ .
The prefactor Zo(gs, t) is given by

3
L t t

Zo(gs,t) = e 13 M3(q 1 )nss (g0 (q)

8The conventions of this paper and [ differ, as here ¢ = e79°, but gihere = €%%, consequently the
topological vertex amplitude Crpg of [[Lf is related to the present one by Crpo(q) = Crro(q™h).
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As explained in [ff] the factor ngis ~ 77% comes from bound states of DO and D4 branes

[Ld] without any D2 brane charge, and moreover, it has only genus zero contribution
perturbatively.
t 2t
n9s ~ exp (——2> + (non — perturbative)
6g;
t
The factor #ss comes from the bound states of D4 branes with D2 branes along each of
three the non-compact toric legs in the normal direction to the P?, and without any DO
branes. This gives no perturbative contributions

t
f9s ~ 14 (non — perturbative)

The subleading chiral blocks correspond to open topological string amplitudes in X with
D-branes along the fiber direction to the P2, which can be computed using the topological
vertex formalizm [[[5] . The appearance of D-branes was explained in [[J] where they were
interpreted as non-normalizable modes of the topological string amplitudes on X. The
reinterpretation in terms of non-normalizable modes of the topological string theory is a
consequence of the open-closed topological string duality on [Iff] . While this is a duality
in the topological string theory, in the physical string theory the open and closed string
theory are the same only provided we turn on Ramond-Ramond fluxes. We cannot do this
here however, since this would break supersymmetry, and the only correct interpretation
is the closed string one.
To make contact with this, define

ZHULUs, Us) = > Zf o g, TreUs Tre,Uz TregUs.
Ri1,Ra,R3

where U; are unitary matrices. This could be viewed as an open topological string am-
plitude with D-branes, or more physically, as the topological string amplitude, with non-
normalizable deformations turned on. These are not most general non-normalizable defor-
mations on X, but only those that preserve torus symmetries — correspondingly they are
localized along the non-compact toric legs, just like the topological D-branes that are dual
to them are. The non-normalizable modes of the geometry can be identified with [[[G]

0= gutr(U7)
where the trace is in the fundamental representation. We can then write ([L.6) as
Zfinite /dU1 dUs dUs |ZF (U, Us, Us)|?
where we integrate over unitary matrices provided we shift
U—Uet

where ty = —%N gs. This shift is the attractor mechanism for the non-normalizable modes
of the geometry [f] . In terms of the natural variables ¢";, related by 7/* = exp(—t?) to 7’s
we have

t? = nto (48)
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This comes about as follows [[]] . First note that size of any 2-cycle C in the geometry
should be fixed by the attractor mechanism to equal its intersection with the 4-cycle class
[D] of the D4 branes, in this case [D] = 3N[Dy]. The relevant 2-cycle in this case is a disk
Cop ending on the topological D-brane. The real part of ¢} measures the size of an n-fold
cover of this disk (there is no chemical potential, i.e. tg is real, since there is associated
BPS state of finite mass). Then ([L.§) follows because

#(CoND)=—N.

To see this note that in homology, the class 3N[D;] could equally well be represented by
—N D-branes on the base P? and the latter has intersection number 1 with Cy. The factor
of n in (f.§) comes about since t" corresponds to the size of the n-fold cover of the disk.

it. The general N; case.

The case N1 > Ny > Nj is substantially more involved, and in particular, the large
N limit of the amplitudes (B.12)([.1)) is not known. However, as we will explain in the
appendix D, turning of f the U(1) factors of the gauge theory, the large N limit can be
computed, and we find a remarkable agreement with the conjecture of [fl] .

Let us focus on the leading chiral block of the amplitude. The large N, M limit of
the interaction Vgr(M, N) (more precisely, the modified version of it to turn off the U(1)
charges) is

(1Q4[+IQ_DIN=M) (R4 |+[R_D(M-N)
2

Vor ~ Bum q q 2
B (KR++NR7 +KQ++I~€Q7)
q 2 Wao.r (@) Wo_r_(q) (4.9)

where Ny
Bar = g2 M (g M (g )0M (q) -

In (£9) the Wpr is related to the topological vertex amplitude as Wpg(q) = (5 P11l x
C’OPTR(q)q“R/Q. It is easy to see that for N = M this agrees with the large N limit of the
simpler form of the Vgg amplitude in (B.1J). It is easy to see that that the leading chiral
block of (1) is

Zoym ~ Zg00()Zg0(t) (4.10)

where ZJO,O(t) is

ZSTQOZZAO Z WR+Q+(Q)WQ+P+(Q)WP+R+(Q)eituRHHQ”HPJr)
R+7Q+7p+

which is the closed topological string amplitude on X. In particular, this agrees with the
amplitude in (@) . In the present context, the Kahler modulus ¢ is given by

1
t= §(N1 +N2 +N3)gs — 6.

This is exactly as dictated by the attractor mechanism corresponding to the divisor [D] =

(N1 + Na + N3)[Dy]!
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The higher chiral blocks will naturally be more involved in this case. Some of the
intersection numbers fixing the attractor positions of ghost branes are ambiguous, and cor-
respondingly, far more complicated configurations of non-normalizable modes are expected.

Recently, phase transitions in 2d YM theory on P! were studied in [L7][LL§] [Ld] [2d][R1]
, where it was shown that the theory has a phase transition when the chern class of the
normal bundle to the branes is not positive. It would be very interesting to study the phase

transitions in the present case.

4.2 Branes on local P2

In this and subsequent section we will discuss the degeneracies of BPS states that follow
from ([.1)) . Using the results of (B.17) and (B.1§) or by direct computation, it is easy to
see that Z;y s is a modular form. Its form however is the simplest in the case

N1 =Ny =N3=N,
so let us treat this first.
i. Degeneracies for N; = N.

In this case, the form of the partition function written in (l.9) is more convenient. By
trading the sum over representations and over the Weyl-group, as in (B.1§) , for sums over
the weight lattices, the partition function of BPS states is

13 PNt . s
Ze(N0g) =B 3 (7)) qh Bl quimpmnanytngny S e
weESN ni,na,n3EZN

(4.11)
where e(N) = (1,...,1) and 8 = a#3V(q). The amplitudes depend on the permutations
w only through their conjugacy classes, consequently we have:

ZqYM:BZd(K) ZK1 X...XZKT (4.12)
K

where K labels a partition of N into natural numbers N = Yor_y Ka, and d(ff) is the
number of elements in the conjugacy class of Sy, the permutation group of N elements,

corresponding to having r cycles of length K,, a=1,...,r, and

ZK(aiags) — (_)wK Z q% Z?:1 nf qu(n1)~n2+n2~n3+n3-n1 eiZf’:l 0ie(K)n; (4‘13)

ni,no,n3cZK

Here wg stands for cyclic permutation of K elements. Note that the form of the
partition function (f.19) suggests that Z,y s is counting not only BPS bound states, but
also contains contribution from marginally bound states corresponding to splitting of the
U(N) to

UN) = U(K;) xU(K2) x ... x U(Ky)
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In each of the sectors, the quadratic form is degenerate. The contribution of bound states
of N branes Zy diverges as

Zn(0i,gs) ~ Y N0 iNm02703) — 5(N (6, — 03))5(N (62 — 03))

m1,mo€Z

This is exactly the type of the divergence we found at large N in the previous subsection.
This divergence should be related to summing over Dy branes with charges in Hy(D,Z)*
— these apparently completely decouple from the rest of the theory.

More precisely, writing U(N) = U(1) x SU(N)/Zy, this will have a sum over 't Hooft
fluxes which are correlated with the fluxes of the U(1). Then, Zy is a sum over sectors of
different N-ality,

N—
ZN(0i,g5) = Z Z %z1+eg+eg)2emzieizi Z q§m T Mym
i=0 fez+%

meZIN=D +£(L;)

=N

where My is a non-degenerate 3(N — 1) x 3(N — 1) matrix with integer entries and &; is
a shift of the weight lattice corresponding to turning on 't Hooft flux. Explicitly,
N—a

& =— L i=123 a=0,..N-1

where My is 3(N — 1) x 3(N — 1) matrix

My Wy My
My = W My My (4.14)
My My My

whose entries are

2 -1 0 0 O
-1 2 -1 0 0
o -1 2 ... 0 0

My = (4.15)
0 0 0 -1 2

and

-1 2 -1 0 0
0o -1 2 0 0
0 o -1 ... . 0

Wy = (4.16)
-1 0 O ... 0 -1

We can express Zy in terms of ©-functions

MZ

Zn(0i,9s) = (=)"N(N(01 — 03))0(N (02 — 63)) (1) ©3n—3[a(L;),b](7)

L;=0

— 22 —



where

Orla,b](T) = Z emiT(nta)? 2minb

neZk
and .
r=5N = ZQSMN
2
L L L N -
_ 1+ Lo+ 3’ b= 19 a, =¢&(L), b=0,
N 2

The origin of the divergent factor we found is now clear: from the gauge theory perspec-
tive it simply corresponds to a partition function of a U(1) € U(N) gauge theory on a
4—manifold whose intersection matrix is degenerate: #(C; N Cj) =1, i,j = 1,2,3. More
precisely, to define the intersection form of the reducible four-cycle D, note that D is ho-
mologous to the (punctured) P? in the base, with precisely the intersection form at hand.
The contribution of marginally bound states with multiple U(1) factors have at first sight a
worse divergences, however these can be regularized by (-function regularization to zero.’
This is a physical choice, since in these sectors we expect the partition function to vanish
due to extra fermion zero modes [[I(][RZ.

To extract the black hole degeneracies we use that the matrix My is non-degenerate
and do modular S-transformation using

Ola, b](1) = det(r) 262 Q[b, —a](—7 1)

This brings Zy to the form

3(N=1)

Zn(01.9:) = O(N (61 — 03))5(N (6 — 03)) (-)" (1@) (ifl) T g My

N-1 2 2
2 N6y2  2mi(L1+Lo+L 2 T -1 .
Z ZB,NES (ngﬁ) B,Wg Z o 97; mt My m6727mm-§(Li)

L;=0/¢eZ meZ3(N—1)
where My is the matrix in (f.14) .

i1. Degeneracies for N1 > Ny > Nj.

When the number of branes is not equal the partition sum Zgy s is substantially more
complicated. By manipulations similar to the ones in appendix B, Z9"M can be written

as:
L
D ISR oD v W
VESNl n1€ZN1 n2€ZN2 n3€ZN3
q_%nl(”71]51\’1\Nzy)nlq_%nQPNz\N3"2q_%n1PN1\Nanl

9For example, Zn—ar(0i,9s)Zr (0, 9s) ~ 6(k(91 — 03)) Yonez 1 X 6( (62 — 03 ) z 1. where
k is the least common divisor of N, M. Using ((2s) = >.o° | 1/n**, where ((0) = —1, we can regularlze
Znez 1=0.
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q*l'(m ) (pny —PNy) g " (oNg—PN3) g (PNy =PN3) gif1€(N1)-n1+i02e(N2)-na+ifze(N3)-n3

where operator ZSN‘ M projects N-dimensional vector on its first M components.
For example, consider N1 = 3, No = 2, N3 = 1. In this case there are six terms in the
sum

1 0 0 0 10 1 00
v = 0 1 0 , Vo= 1 0 0 , V3= 0 0 1
0 0 1 0 0 1 0 1 0
0 0 1 0 10 0 0 1
vy = 0 1 0 , Vs = 0 0 1 , Vg = 1 0 0
1 0 0 1 0 0 0 1 0
In this simple case Zgy s has the form
7\ 2 x2
Zyym = ab*(d) <9—> <Z1 —Zy— 73— Zs+ 75+ ZG) ¢ =e o
S
where 5
w2 —
Z; = (2_7T> det— 3 Mgy 3 e m UM ()
s fezs
where non-degenerate matrices M;) for ¢ = 1,...6 are given by
1 0 0 0 0 O 1 0 0 0 0 O
0 -1 0 1 0 1 0 -1 01 O 1
0 0 0 1 0 0O 0 0 0 1 0
Mo=1o 1 010 1" M@ |0 1 00 0 o
0 0 1 0 0 O 0 0 1 0 -1 1
0 1. 0 1 0 -1 0 1 00 1 -1
0O 0 01 0 O 0 00 0 1 0
0 -1 0 0 1 1 0 00 0 O 1
0 0 1.0 0 ©O 0 001 0 O
Mo=11 0 00 0 of M9T|o0o10 0 o
0O 1 00 -1 1 100 0 -1 1
0O 1. 00 1 -1 0100 1 -1
0 001 0 O 0O 0 0 0 1 0
0 00 0 O 1 0 -1 01 0 1
0 00 0 1 0 0 0 1.0 0 O
Mo=l1 000 0 of M9T]o 1 00 0 o
0 01 0 —1 1 1 0 00 -1 1
0100 1 -1 0 1 00 1 -1
and vectors A for ¢ =1,...,6 have components
1 1G5 3 1 11
Ay =—(01,01,01,05,05,0 =2,—=,—=,—=,=,0
(1) 27T( 1,v1,V1,0U2,0U2, 3)+ 27T( ) 27 27 2727 )
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A?Q):A?l)’ a:1,...,6

1 1gs 1 3 1 1
ALy = —(64,64,01,04,65,6 —(=,—=,1,—-,—=,0
(3) 27‘('( 1,Y1,Y1,Y2,V2, 3)+27T(27 91y Ty )
A?G):A?g), a/:17...76
1 1gs 1 11 1
ALy = —(61,61,01,04,65,0 —(=,0,—=,=,—=,0
(4) 27‘('( 1,Y1,Y1,Y2,V2, 3)+27T(27 Ty Ty )

A((IS):A((IZI)’ a:1,...,6

5. Branes and black holes on local P! x P!

For our second example, we will take a noncompact Calabi-Yau threefold X which is a
total space of canonical line bundle K over the base B = P}B X P}m

X =K — Ph xPL

where K = O(—2,—2). The linear sigma model whose Higgs branch is X has chiral fields
X, 1 =0,...4 and two U(1) gauge fields U(1)p and U(1)r under which the chiral fields
have charges (—2,1,0,1,0) and (—2,0,1,0,1). The corresponding D-term potentials are

X1 [* + [ X3 = 2|Xo[* +rp

1 X0+ [ X4 = 2| X0 +rp

The H?(X, Z) is generated by two classes [Dr] and [Dg]. Correspondingly, there are two
complexified Kahler moduli tg and tp, tg = rg — i0p and tp = rp — i0p. There are 4
ample divisors invariant under the 7% torus actions corresponding to setting

D;:X;=0, i=1,2,3,4

We have that [D1] = [D3] = [Dp] and [D2] = [D4] = [Dp]. We take Ny and Ny D4 branes
on D; and D3, and M; and Ms D4 branes on Dy and Dy respectively, corresponding to a
divisor

D = N1D1+ My Dy + NoD3 + MyDy

Since the topology of each D; is O(—2) — P! we will get four copies of qYM theory of
P! with ranks Nio and M . In addition, from the matter at intersection we get 4 sets of
insertions of observables (E) . All together, and assuming Ny 9 > Mj o, we have

2 . )
Zay =7 . Vorr,Voyra VRi0, VRao, g2t C2(R+C2(Q)

R1,R2,91,92
6i93,101 (R1)+i0B,2C1 (732)6i9F,1C1 (Q1)+i0r,2C1(Q2) ) (5.1)

Above, R1, R, are representationss of U(N7) and U(N2) and Q7, Qo are representations
of U(M,) and U(Ma), respectively.
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N,

Figure 4: The base of the local P! x P'. The numbers of D4 branes wrapping the torus invariant
non-compact 4-cycles are specified. This corresponds to qYM theory on the neclace of 4 P'’s with
ranks Ml, Nl, MQ, and NQ.

In principle, because dim(H?(D,Z)) = 4, there 4 different chemical potentials that we
can turn on for the D2 branes, corresponding to 0p;, 0F;. In X however, there are only
two independent classes, dim(H?(D,Z)) = 2, in particular

[P%m] - [PIB,2] =0, [P}m] - [P}?,ﬂ =0

We should turn off the chemical potentials for those states that can decay when the YM
theory is embedded in string theory, by putting

0p1 =052, 01 =0Fp. (5.2)

For the most part, we will keep the chemical potentials arbitrary, imposing (F.9) at
the end. The prefactor + is

_ 202 +ﬂ
)
_(gp%\h_i_%)q*% ((N1+N2)3+(M1+M2)3*3(N1+N2)2(M1+M2)*3(M1+M2)2(N1+N2))
OBOr (N1+No+M+Mj)
X e 49s

xq

In the next subsections we will first take the large N limit of the qYM partition
function, and then consider the modular properties of the exact amplitude to compute the
degeneracies of the BPS bound states.

5.1 Black holes on local P! x P!,

We will now take the large N limit of Z,y s in (5.1]) and show that this is related to the
topological string on X in accordance with the [[l] conjecture.

i. The N1 = Ny = N = My = M> case.

In this case, we can use the simpler form of the vertex amplitude in (B.12) to write the
g-deformed Yang-Mills partition function as:

Zoym =+ Z

R1,2,Q1,2€U(N)

,26,



S’R1Q1 (gsa N) SQl'féz (93’ N) SRQQQ (93’ N) SQz'fél (gs’ N)
w et 22i08,iC1(Ri)+i0p,iC1(Qi) (5.3)

where v = v0*"N(q). Using the large N expansion for S-matrix (.4) and parametrizing
the U(1) charges (g, of the representations R; as follows

2p =/lR, +Lp,, QEFZEQI—{—EQQ, 2np = €lr, — Lp,, 27”LF:€Q1—€Q2, (5.4)
we find that the sum over np r gives delta functions

Zaym(N, 95,08, 08:) ~ 6(N (051 — 082)) 6(N(0p1 — Or2)) Z3'51 (N, 95,05, 0r)

where

it ' p
ghmite o NN ()ThalA
mp,mp€Z P1,....,Ps
Z;17...7P4(t3 + mBgs, tr + mrgs)
Zhr

- pr (I8 = MmBYs, T —mpgs) (5.5)

In (B3) the chiral block Z5  , (tp,tr) is given by

il 4 . — —
Z;I,...,P4(thtF) = Zo(gs, tp, tp)e to 2=t 174l Z e~ tB(Ril+|Ra) o —tr (1Q1|+]Q2])
R1,R2,Q1,Q2

xq7 L=tz MR Corr,p (@) Crrg,p, (@) Cor gypy (4) Crrg,p, (¢5-6)
where Kahler moduli are
tp :gsN—iHB, tF:gsN—iHF.

The leading chiral block Zaf .0 1s the closed topological string amplitude on X. The Kahler
moduli of the base P}3 and the fiber P}; are exactly the right values fixed by the attractor
mechanism: since the divisor D that the D4 brane wraps is in the class [D] = 2N[Dp] +
2N[Dg]. As we discussed in the previous section in detail, the other chiral blocks (f.4)
correspond to having torus invariant non-normalizable modes excited along the four non-
compact toric legs in the normal directions to the base B. Moreover the associated Kahler
parameters should also be fixed by the attractor mechanism — as discussed in the previous
section, we can think of these as the open string moduli corresponding to the ghost branes.
The open string moduli are complexified sizes of holomorphic disks ending on the ghost
branes and these can be computed using the Kahler form on X. Since the net D4 brane
charge is the same as that of —/N branes wrapping the base, and the intersection number
of the disks C ending on the topological D-branes with the base is #(Cy N B) = 1, so the
size of all the disks ending on the branes should be tg = —%N gs, which is in accord with

(-4) . The prefactor in (p.6) is

1 3 3 2 2 t t t t
5 L (4t 312t p—3t5tr) Bttr | tB¥tp

Zo(gs:tB, tr) = €293 Mg e (g7 e (g)
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As discussed before, the eta and theta function pieces contribute only to the genus zero
amplitude, and to the non-perturbative terms.

1. T'he general Ny, M2 case.

We will assume here N; > Mj, i, = 1,2. Using the large N, M limit of Vro(N, M)
with U(1) charges turned off (see Appendix D) we find that the leading chiral block of the
YM partition function is

Zoym ~ Z3 o(ts,tr)Zy, o(tB, tr)

where Za: ___70(tB,tp) is precisely the topological closed string partition function on local

P! x P! [[g :

Zio=2% 2 Wornr @Worns (OWorrr (@OWos rs (@)
Q+ + R+ R+
122084 42

e tr(QTIH1QF]) o ~ts (IR [+RS )

It is easy to see that this agrees with the amplitude given in (@) . Moreover, the Kahler
parameters are exactly as predicted by the attractor mechanism corresponding to having
branes on a divisor class

[D] = (N1 + No)[Dg] + (M1 + M>)[Dp].

Namely,
1 . 1 .
tp = §(M1 + Ms)gs — i0p, tp = §(N1 + N2)gs — iblp.

Note that the normal bundle to each of the divisor D; is trivial, so the size of the corre-
sponding P! in D; = O(—2) — P! is independent of the number of branes on D;, but it
does depend on the number of branes on the adjacent faces which have intersection number
1 with the P1.

It would be interesting to study the structure of the higher chiral blocks. In this case
we expect the story to be more complicated, in particular because some of the intersection
numbers that compute the attractor values of the brane moduli are now ambiguous.

5.2 Branes on local P! x P!

We will content ourselves with considering N1 = Mj 2 = N case, the more general case
working in similar ways to the local P? case. The partition function (f.3) may be written
as

Zyn(N.0ig) =7 3 ()" 3 grneimmsmenitnin N1 0N (5.7)

weSN n1,...,na€ZN
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where e(N) = (1,...,1). As before in the case of local P2, the bound states of N
D4-branes are effectively counted by the Zy term, i.e. the term with w = wy. Like in
that case, Zy is again a sum over sectors of different N-ality,

N-1
Zn(0i,gs) =+ ()" >
Li,....,La=0
Z qN(£1+€3)(£2+£4)eiNZ?:lGiéi Z q%mTMm
GeZ+5 meZAN = 1E(L;)

where M is a non-degenerate 4(N — 1) x 4(N — 1) matrix with integer entries and & is a
shift of the weight lattice corresponding to turning on ’t Hooft flux.
More explicitly,

é-za:—LZ’ Zzl,,4 aZO,N_l

M is 4(N — 1) x 4(N — 1) matrix

0 M@V 0 AfN
Wi 0 My O

_ 5.8
M 0 My 0 My (58)
My 0 My O
whose entries are (N — 1) x (N — 1) matrices
2 -1 0 0 0 0
-1 2 -1 0 0 0
o -1 2 -1 ... 0 O
My = (5.9)
0 0 0 0 -1 2
and
-1 2 -1 0 0 0
o -1 2 -1 0 0
0 0o -1 2 0
Wy = (5.10)
0 0 0 o ... =1 2
-1 0 0 o ... 0 -1

We can express Zy in terms of ©-functions

Zn(0i,9s) = 7' (=)"NO(N(0p,1 — 0B2))0(N(0F1 — 0F2))
Tl Lm0 ©20a(Li),b(r) Oun—sla(L;),b](7)

where
Gk[a, b](’T) _ Z e7ri7—(n+at)2 e2m’nb

nczk
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P e

Figure 5: N D4-branes are wrapped on Ay type ALE space in Ay x C, for £ = 3. The D-brane
partition function is computed by U(N) qYM theory on a chain of 3 P'’s.

and
105 0 1 . 1gs
:—N = —
T or <1 0>’ =M
and L Ly L L N N
1+ Lg Lo+ Ly oy
= b=(—0g, —0 =&(L b=0
a ( N ) N )’ (27{_ B o F) ay, 5( )’ 3

To extract black hole degeneracies we use that matrix M is non-degenerate and do modular
S-transformation using

Ola, b](1) = det(r) 262 Q[b, —a](—7 1)

After modular S-transformation Zy is brought to the form

4(N=1)

Zn(0,95) = 7' S(N (01 = 0p2))0(N (01 — Or2)) ()™ ($2) (Z) 7 det 3M
2 No NO i i
N—1 _ By 20Ey _2mi(Ly+L3), _ 2mi(Lo+Ly)
Ll,...7L4=02Z7ZIEZe Ng;( 27 )( 27 )e N ge N ¢
27

2 T MY onimeg(Ls
>omezan-n e o M= 2mimeE(Li)

6. Branes and black holes on A, ALE space

Consider the local toric Calabi Yau X which is A;, ALE space times C. This can be thought
of as the limit of the usual ALE fibration over P! as the size of the base P! goes to co. In
this section we will consider black holes obtained by wrapping N D4 branes on the ALE
space.

This example will have a somewhat different flavor than the previous two, so we will
discuss the D4 brane gauge theory on a bit more detail. On the one hand, the theory
on the D4 brane is a topological U(N) Yang-Mills theory on Ay ALE space which has
been studied previously [R3, [[d] . On the other hand, the A; ALE space has T2 torus
symmetries, so we should be able to obtain the corresponding partition function by an
appropriate computation in the two dimensional qYM theory. We will start with the
second perspective, and make contact with [RJ[[[]] later.
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As in [F and in section 3, our strategy will be to cut the four manifold into pieces
where the theory is simple to solve, and then glue the pieces back together. The Ay type
ALE space can be obtained by gluing together k + 1 copies of C2. Correspondingly, we
should be able to obtain YM amplitudes on the ALE space by sewing together amplitudes
on C2. Moreover, since the C? and the ALE space have T? isometries, the 4d gauge theory
computations should localize to fixed points of these isometries, and these are bundles with
second Chern class localized at the vertices, and first Chern class along the edges.

Viewed as a manifold fibered by 2-tori T2, C? has contains two disks, say Cpese and
C'iber that are fixed by torus action (see figure 2 by way of example). Viewed as a line
bundle over a disk Cpqse as a base, the U(1) isometry of the fiber allows us to do some
gauge theory computations in the qYM theory on Cpyse. In particular, if the bundle is flat
the qYM partition function on a disk (B.7) with holonomy U = exp (i § A) fixed on the

boundary of the Cpyse fixed and no insertions is'®

Z(C)U) =) e? R Sur (N, gs)TrrU.
R

What is the four dimensional interpretation of this? The sum over R in the above corre-
sponds to summing over the four dimensional U(N) gauge fields with

/ F, =R, gs, a=1,...N, (6.1)
fiber

where R, are the lengths of the rows in the Young tableau of R.!' This is because on
the one hand
Sor(N.gs) = (Trre't4). (6.2)

and on the other § A, = fbase F, is conjugate to &, = ffiber F,, so inserting (p.4) shifts F
as in (p.J]) . The unusual normalization of F' has to do with the fact that gYM directly
computes the magnetic, rather than the electric partition function: In gluing two disks to
get an P! we sum over all R’s labelling the bundles of the S-dual theory over the P!.

If we are to use 2d qYM theory to compute the N' = 4 partition function on ALE
space, we must understand what in the 2d language is computing the partition function
on C? with

F, =R, gs, / F, = Q.9s, a=1,...N, (6.3)
fiber base

since clearly, what we call the “base” here versus the “fiber” is a matter of convention.
Using once more the fact that ® and § A are conjugate, turning on fbase F, = Q.95
corresponds to inserting Trg e™*® at the point on Cpyse Where it intersects Ctiper- Thus,
turning on (.9) corresponds to computing (Trge™*® Trg eifA ). This is an amplitude we
already know:

Sor(N,gs) = (Trge™™® Trre'$ 4 ). (6.4)

0NMore precisely, as we explained in section 3, the coordinate U is ambiguous since the choice of cycle
which remains finite is ambiguous. This ambiguity relates to the choice of the normal bundle to the disk,
and the present choice corresponds to picking this bundle to be trivial, which is implicit in the amplitude.
"To be more precise, R in (@) is shifted by (N + 1) — a.
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Alternatively, the amplitude on C? with arbitrary boundary conditions (.3) on the
base and on the fiber is
> Sra(N,gs) TrrU TroV (6.5)
R,Q
We then glue the pieces together using the usual local rules. The only thing we have
to remember is that the normal bundle to each P! is O(—2), and that at the “ends” we
should turn the fields off. In computing (p.4) we used the coordinates in which C? is a
trivial fibration over both Cyipe, and Cpgse, and therefore to get the first Chern class of
the normal bundle to come out to be —2, we must along each of them insert annuli with
O(—2) bundle over them. This gives:

7 = Z SoR 1y SRRz, - - - SRy g2 R») 1 X 0IRG)| (6.6)
Ri.. Ry

There is one independent # angle for each P! corresponding to the fact that they are
all independent in homology. These 6 angles will get related to chemical potentials for the
D2 branes wrapping the corresponding 2-cycles.

6.1 Modularity

The S-duality of N' = 4 Yang Mills acts on our partition function as gs — 4ng_ By
performing this modular transformation we will be able to read off the degeneracies of the
BPS bound states contributing to the entropy. First, using the definition of the Chern

Simons S-matrix, we find that

7 — § :(_1)w § : qn%Jr...+nifn1n27...fnk,1nk 6i€1\nl|+...€k\nk\qpn1+nkw(p) (67)
weWw nl,...nkGZN

Note the appearance of the intersection matrix of Ay ALE space. The fact that the
Cartan matrix appears gives the k vectors U(N) weight vectors n¢ i =1,...k,a=1,...N
an alternative interpretation as N SU (k) root vectors:

7 = Z (_1)w ﬁ Z q%nana eiGnaq(p-l—w(p))ana

wew =L naeAGET,

where 0 is a k-dimensional vector with entries #;. From the above, it is clear that Z is a
product of N SU (k) characters at level one. Recall that the level one characters are

)
1) 0y (7, u)
Xy (ryu) = Aot
R

where
1 ; 2 on
6; )(T, u) _ Z ewzr(n—i—)\) +2mi(n+A)u
n€ATT )

To be concrete, our amplitude is given as follows:

N
Z =n@"* 3 (0 [Tx (ru(0,w)
a=1

weWw
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Here,

igs a 92 Z.gs a
T = ; 6 W) = — + _— + wl\p

Modular transformations act on the space of level one characters as:

e R D T e !
weEW) A

consequently, the dual partition function also has an expansion in terms of N level one
characters. The product of N level one characters can be expanded in terms of sums of
level N characters, so this is consistent with the results of H. Nakajima. The fact that
the partition function is a sum over level N characters, rather than a single one is natural
given that we impose different boundary conditions at the infinity of ALE space from [J

6.2 The large N limit
In the 't Hooft large N expansion, using ({.4) , we find that the partition function (p.q)

can be written as follows:

ZALE = Z (=) /Pl Pt Z

P1,..,Priq mi,...,mpEZ

Zp . ppy (B mags, .ty + mpgs) thlTkaTﬂ(fl —M1Gs, - b — MpGs),

where m’s are related to the U(1) charges of representations R; as m; = 2¢; — £;—1 — {41,
fori=1,...,k (where ¢y = £;11 = 0). The Kahler moduli are

tj=—i60;,  j=1,...k,

which is what attractor mechanism predicts: Since ALE space has vanishing first Chern
class, the normal bundle of its embedding in a Calabi-Yau three-fold is trivial, and con-
sequently #[Da, N C] = 0 where Dy, is (N times) the divisor corresponding to the ALE
space and C' is any curve class in X.

The normalization constant aarz in (B.7) was determined by requiring the large N
limit factorizes in the appropriate way.

aanp = qUEHDEP+3D) o260 A0 (6.8)

where A is the inverse of the intersection matrix of ALE.

The chiral block in the chiral(anti-chiral) decomposition of Z41g has the form

T 2
totl At | 7%(k+Dtg
7+ ktl —m— A — s k+1p

Pry.. ;P (t1,... ty) =M(q) 2 e 295 6 et 2 [Pl

A KR, /2 ,—t1|R1| A KR, /2 ,—t2|Ra| A
X Z CORlTqu re CRIRQTPQQ 2’e ---CRkOPkH-
Ri...Rg
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where 1
to = §Ngs. (6.9)

We see that the trivial chiral block Z&...,o(tla ..., tx) is exactly the topological string
partition function on ALE, in agreement with the conjecture of [l . Moreover, the higher
chiral blocks correspond to having k + 1 sets of topological “ghost* branes in the C di-
rection over the north and the south poles of the P'’s. The associated moduli, i.e. the
size of the holomorphic disks ending on the topological ghost branes is also fixed by the
attractor mechanism, to be #(Da, N Cyisi) = N. This is gives exactly (6.9) as the value
of the corresponding Kahler moduli ¢g, in agreement with the conjecture. As we discussed
in section 4, in the closed string language, these are the non-normalizable modes in the
topological string on X. The classical piece of the topological string amplitude

1 T
—tot At 6.10
T (6.10)
deserves a comment. Because X = Aj x C, taking only the compact cohomology the triple
intersection numbers would unambiguously vanish. The non-vanishing triple intersection
numbers can be gotten only by a suitable regularization of the C factor. This was already
regularized, in terms of the Kahler modulus ¢y of the non-normalizable modes — which

exactly give the measure of the size of the disk, i.e. C, making (b.10) a natural answer.!2
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A. Conventions and useful formulas

The S matrix is given by

Sro(N,gs) = Y (=)“q v Rrew) (Qron)

wWESN

where ¢ = exp(—gs), and p% = W, for a = 1,...,N. Note that while the ex-

pression for Sgg looks like that for the S-matrix of the U(N) WZW model, unlike in

12What is less natural is the appearance of the inverse intersection matrix of ALE. However, one has to
remember that this is a non-compact Calabi-Yau, where intersection numbers are inherently ambiguous.
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WZW case, g, is not quantized. Using Weyl denominator formula Trrz = [],. j(:cl- —
xj) ZwesN(—)wxw(R+pN), the S-matrix can also be written in terms of Schur functions
sr(x1,...,xn) = Trrx of N variables.

Sra/So0(gs, N) = sr(a~ "~ %)sq(q™"™).

Above, x is an N by N matrix with eigenvalues x;, i = 1,... N, as

The S matrix has following important properties:

SﬁQ(Nv gS) = SRQ(Nv _gs) - S’I_le(N7 gs)

The first follows since (up to a sign that is +1 if N is odd and —1 if NV is even), Q + py =
—wn(Q + pn) where wy is the permutation that maps a — N —a+ 1 fora =1,...,N.
The second is easily seen by computing

ZP Srp(N, —9s)Spo(N, gs) = ZweSN(_)w ZnEZN qw(pN+R)-nq—n~(pN+Q)
= ZwesN(_)wé(N) (w(pny +R) — (py + Q)) = dro-

where we absorbed one sum over the Weyl group into the unordered vector, n. Note that
(pny +R)® and (pny + Q)® are decreasing in a, so the delta function can only be satisfied
when w = 1.

The large N limit of the S matrix for coupled representations R = Ry R_[(g], Q =
Q+Q_[lg] is given in ({4) in terms of the topological vertex amplitude

Cror(q) = Cror(¢t), Cror(q) = ¢ % sp(q”) Z SRt/n(qP+p)5Q/n(th+p)
n

This has cyclic symmetry OPQR = C’QRP, and using the properties of the Schur func-
tions under ¢ — ¢~ ': sp(q@t?) = (—1)Flspr (q*QT*p) also a symmetry under inversion:
Cror(q™?) = (—)FIHIRIHIPIC i pi (q). The leading piece of S in the large N limit is
significantly simpler than (4) . Since Corg(q) = (—)|R‘+|Q|WRTQ(Q)(]_%HQ we have:

Srolge, N) = (=) 1R+ H@4 IR [+1Q-| g~ Nerto g—r(1@+1-|Q-]) g—ta(—s| -]
Wr. o, (@)Wg_q_ (q)qf%umwm_ [+Q++lQ-1)

where
Wro(q) = sr(¢”"9)so(q”)

Wherep:—a—i—%,fora:l,...,oo.

B. Quantum Yang-Mills amplitudes with observable insertions

Consider the U(N) g-deformed YM path integral on the cap. As shown in [J] this is given
by

Zaym(C)(U) = SorTrrU.
R
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The Fourier transform to the ® basis is given by the following path integral over the
boundary of the disk,

Zqeym(C)(U) = /dH(I) ea I Znn (C)(@).

Since the qYM path integral localizes to configurations where @ is covariantly constant,so

in particular ® and A commute, integrating over the angles gives'
T Au(¢) Ly ga =
Z = d 7 S ¢ Z, )
(@@ = [ TLaon T3 = Zoua(©)(9

where we defined a hermitian matrix u by U = ¢, and

Au(¢)= T 2sinl(é:—¢)/2 = [] 2sin(@- 4).

1<i<j<N a>0

comes from the hermitian matrix measure over (Z by adding images under (E — q; + 2711, to
take into account the periodicity of ®.
Now, in the & basis, the path integral on the disk with insertion of TTQeM’ is simply
given by:
Z(C, Trge®)(®) = Troe™®

since ® is a multiplication operator in this basis. Transforming this to U-basis, we use

‘ B —1)w iw(G+75)¢
Troe'® = xo(¢) = Luesy(“1)e ———
ZWGSN(_1)(06“)@,)-(;5

where Sy is the Weyl group and p'is the Weyl vector. We also use the Weyl denominator

[[sin@-é)= Y (—1)=e@.

a>0 wESN

formula

Plugging this into the integral, and performing a sum over the weight lattice we get

1

Z(C, TrQeM))(U) = An()

Y (“1)%8(i + igsw (5 + Q)

weWw

We can extract the coefficient of this in front of TrgrU by computing an integral
/ dUZ(C, Troe®)(U)TrrU !

which easily gives
Z(C,Troe™)(U) =Y Srol(gs, N)TrrU.
R

13 There was an error in [E] where the denominator 1/A g (u) was dropped. In that case this only affected
the definition of the wave function (whether one absorbs the determinant Ag(¢) into the wave function of
¢ or not), but here we need the correct expresion. This normalization follows from [Q] where the matrix
model for a pair of commuting matrices with haar measure was first discussed.
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where
Sro(gs, N) = S o(@+e)r(Rtp)

in terms of g = e™9s.

Another expectation value we need is of
Z(C,Troe® ™I )(U)

We can compute this by replacing ® by ® = ® —n § A everywhere. The only difference is
that we must now transform from ® — n ¢ A basis (with § A as a momentum) where the

computations are simple to § A basis with ® as a momentum, and this is done by

Zuaw(©)U) = [ 0/ T ET 2y (C)(@),

This gives
Z(C, Troe'®~ 4 Ay (U Z 2C2 SQRTTRU
R

C. Modular transformations

C.1 The vertex amplitude

Consider the vertex amplitude corresponding to intersecting D4 branes:

Z(U,V) = > Vro(N, M)TrrUTroV
ReU(N), QeU(M)
where
cSM) (p)
VRo= Y a4 2 Srp(gs,N)Spa(—gs, M)

PeU(M)

Using the definition (B.§) of Srg and the Weyl-denominator form of the U(N) characters
Z(U, V) becomes:

1 P +pprll?
_ wl +w2+w3+w e
Z(U,V) = NN Z Z 5 2

w1, W3ESN wh,waESNy

q(P—l—pM)-wg(Q-FpM) —(P+pN)w3(R4pN) giwt (R+pN)-u o (Qtpar)- w2 (iv)

q

We can trade the sums over the Weyl groups, for sums over the full weight lattices: Put

this defines elements wp,wqg € Sy uniquely given wy, ws. Then, we can always find an
element wgr € Sy such that

-1
w3 = Wp WR,
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for a given ws, by simply viewing wp as an element of Sy acting on first M entries of any
N dimensional vector, leaving the others fixed. Finaly, find an w € Sy such that

wy) = w_le,

Note now that
wp(P + pn) = wp(P + pum) + pN — pu

since wp acts only on first M entries of a vector and the first M entries of py — pas are
all equal, hence invariant under wp. Using this and the fact that now only permutations
w are counted with alternating signs, we can combine the sums ofer the weyl-groups with
the sums over the lattices to write:

2 . .
ZUV)=An(w) D) 3 ()0 Y gE g e nen e

weSN m,p€ZM; ncZN

Now split n = (n/,n”) where n’ is the first M entries in n, n” the remaining N — M, and
similarly put py — papr = (¢, p”'), where we have treated pys as N dinemsional vector first
M entries of which is the standard Weyl vector of U(M), the remaining being zero, and

u = (u',u”). If one in addition defines m’ = m — n’ above becomes

Z(U,V) = M (@A) Ap) "t S () Y "B i

wESN m/eZM

D I S A,

n/ezlw n//ezN—]M

n2
where 0(q) = ), cz ¢ 7 is the usual theta function. We write n again as an N —dimensional
vector (n’,n’) =n to get our final expression
- - NGO , ,
ZWOV)=0@MAu(w) ' Ag()™ D> gz €™ Y (=) (v +w(iv)+(pn — par)gs)

m/€ZM wESN

where v, pps are regarded as N dimensional vectors (v, 0N =M), (pyr, 0N —M),

D. Large N limit of the vertex amplitude

Here we find the large N, M limit of the interaction
(M)
M) (py
VRo =Y _ Srp(N,g:)q¢~ = Spo(M,gs)
P
(we've dropped an overall factor). Using T'S™' = 0(¢)MS—'T-1S~1T~! in the U(M)
factor, this can be done by computing first the large N, M limit of

Z S’R’P(Na gs) SﬁA(M, gs)
P
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and then using large M limit of (TST);IQ to get the full amplitude. In general, either
version of the problem is very difficult and at present unsolved. Things simplify significantly
if we turn of f the U(1) charges all together. This means we will effectively compute the
SU(N) rather than U(N) version of interaction. It will turn out that the crucial features
that one expects from the amplitudes assuming the conjecture holds, are unaffected by
this. In this case, the representations R are effectively labeled by Young tableaux’s.
From the free fermion description of the Y’ M amplitudes it follows easily [R§] that:

Z Srp(9s, N)SpA(9s M) = ant (9)an (@) Socr, . y(9s: N)Sora, 4 y(gs, M)

PeUM)
XH GN —3M +j -] 3N =M +j — ]
o[RS — AT+ N = gM+j —i] [Ry = A7 + 3N = 5M +j — ]
AN+IM—j—i INFIM—j—i+1
XH + +1 iy Al - [2++12 f H—,], (D.1)
=1 B +A +gN+5M—j—i+1] [Rf + A7 + 5N +5M —j—i+]1]

where the arrow indicates taking large N, M limit and where ay(q) = g PXtan) b (q) x
n™(q), and similarly for ay; with M, N exchanged.

For simplicity, we will be are interested only in the leading chiral block of the amplitude
which determines the Calabi-Yau manifold that the YM theory describes in the large N

limit, and neglects the excitations of non-normalizable modes. In this limit, the piece
SoryR-)(9s)Soa, i_(9s) gives

MAL[+HIA_D  _ NOR4[+IR_D
2

an(@)an(@QWarg(@Waro(DWrro(@Wrrolade™ ™ 2 4

where Wrp(q) = sr(¢”)sp(¢t?), and moreover Wgo(q) = (—)ElgFr/2Wgro(q). Of the
infinite product terms, in the leading chiral block limit only the second row in (D.I]) con-
tributes. This is because the interactions between the chiral and anti-chiral part of the
amplitude are supressed in this limit. Using

LTI > salaery
Yj ;

1,J

we get

N-—M
const. X Z sp, (q% ) sp, (W )sp (qfTP)sp (g~ A-10)gIPHHIP-D5

PP

The constant comes from regularizing the infinite products (see [P5 for details) and can
be determined by computing the leading large N, M scaling

L. . [AN—2M—j+i] L. [3N—1M—j+i]
(i)eA+ [—IN—Im—j+i) LlG@7)eA- [—IN-IMm—j+i]

N4+ N-3M4j=i] | TASTAL MORGISR 4D
Heger. dnrtarsa Hoper dnrtar ~4 7 4 :
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where i goes over the rows and j over the columns. All together, this gives

N-—M kR, thkr_ KA, trA_
ZPEU(M) S’R’P(gs’]V)S’IS.A(QSJW)—> (_)IRHHR*‘Q* 2 (\R+\+|R_Dq7 3 q -
N-—M

N-—M
|P-|

Sp ()PIWr_p ()Wpr 47 (a)g 7

Next, recall that (see appendix A) the large M limit (more precisely, the leading chiral
block) of (T'ST) ! is

NA++NA7 +I€Q+ +I€Q7

(TS ' T N ag = an(aYWa, g (@Wa_o_(9)a 2

To compute our final expression, we need to sum:

M)
2

> Srp(N,gs)q— = = Spo(M, gs) — ang(g~ 1) (=) B HE=g= "5 Ry [+1R-)
P

of

_IRyTrQy N
q ? Z (_)‘P+‘WR+P+(q)WPIA£(q)WA+Q+(q)q 7| Pyl
P, Ay
tho e N—M
a Z (_)‘PJWR_P_ (q)WPZAZ (q)WA_Q_ (q)qT“:L‘.
P_,A_

)

Note that this contains an ill-defined expression

Y Wprar(@) Wo,a,(a) D Wprar(a) Wo_a_(q) (D-2)
Ap A

The physical interpretation of a finite version of this amplitude, with insertions of
e 441 and e~ 4~ also suggests how to define (D-2) . Namely, the finite amplitude is the
topological string amplitude (more precisely, two copies of it) on O(—1) & O(-1) — P!
with D-branes as in the figure, where the size of the P! is ¢.

In the limit ¢ — 0 the P! shrinks to zero size, and one can undergo a conifold transition,
to a small S® of size €. In this case, the only holomorphic maps correspond to those with
P, =Q4, so that

5 Worar(0) Wa,a, () = 5Ps — Q).
Ay

and similarlty for the anti-chiral piece, which is independent of €, as this is a complex

structure parameter. Our final result is:

M) (p)

ZSRP(N, g)q T Spo(M,gs) — an(q") 0 (q) (=) B[ HE-[+Q+ | +Q-]
P

""iR_ KQ_’_ +I'€Q_

N-—M N-M _ Ry _
g 2 (\R+\+IR—I)q 3 (\Q+\+IQ7\)q 5 q 5 WR+Q+(Q)WR_Q_(Q) (D.3)
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Q. Q+= Py

Figure 6: The figure on the left corresponds to O(—1) @ O(—1) — P! with P! of size t with two
stacks of lagrangian D-branes. The representations Py and ()4 label the boundary conditions on

open string maps. When ¢ = 0 the Calabi-Yau is singular, but can be desingularized by growing
a small S3. The singular topological string amplitudes can be regulated correspondingly, and with
this regulator, they vanish unless P = Q4. See [@] for more details.
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