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1. Introduction

Recently, Strominger, Ooguri and Vafa [1] made a remarkable conjecture relating four-

dimensional BPS black holes in type II string theory compactified on a Calabi-Yau manifold

X to the gas of topological strings on X. The conjecture states that the supersymmetric

partition function Zbrane of the large number N of D-branes making up the black hole, is

related to the topological string partition function Ztop as

Zbrane = |Ztop|2,

to all orders in ’t Hooft 1/N expansion. This provides an explicit proposal for what com-

putes the corrections to the macroscopic Bekenstein-Hawking entropy of d = 4, N = 2

black holes in type II string theory. Moreover, since the partition function Zbrane makes

sense for any N , this is providing the non-perturbative completion of the topological string

theory on X. A non-trivial test of the conjecture requires knowing topological string par-

tition functions at higher genus on the one hand, and on the other explicit computation of

D-brane partition functions. Since neither are known in general, some simplifying circum-

stances are needed.

Evidence that this conjecture holds was provided in [2][3] in a special class of local

Calabi-Yau manifolds which are a neighborhood of a Riemann surface Σ. The conjecture

for black holes preserving 4 supercharges was also tested to leading order in [4][5][6] . The

conjecture was found to have extensions to 1/2 BPS black holes in compactifications with

N = 4 supersymmetry [7][8][4][5] . In [9] the version of the conjecture for open topological

strings was formulated.

In this paper we consider black holes on local Calabi-Yau manifolds with torus symme-

tries. These Calabi-Yau manifolds are special in that the topological string amplitudes on

them are computable to all genera. This makes them an ideal ground for testing the OSV

conjecture. Namely, one of the most important aspects of the conjecture is that it provides

a prediction for what the quantum corrections to the Bekenstein-Hawking entropy-area

relation are. These invariably enter at higher (topological) string loops, and in this class

of models they are computable. Moreover the Calabi-Yau manifolds end up involving local

surfaces and this turns out to mean that the corresponding topological string amplitudes

are far more complex than in the local curve cases studied in [2][3].

In the case of local curves in [2][3] the D-brane theory involved D4 branes wrapping a

4-cycle in the Calabi-Yau which was a line bundle over the Riemann surface Σ. The theory

on N D4 branes turned out to be equivalent to a variant of the bosonic 2d U(N) Yang-

Mills theory on Σ. The amplitudes of this theory are computable as well, and this allowed

an explicit verification of the OSV conjecture in that case. For the case at hand, it is

natural to consider D4 branes wrapping 4-cycles that are invariant under torus symmetries

of the Calabi-Yau. As long as one wants to preserve the symmetry, a generic such 4-cycle

is a reducible sum of basic invariant divisors. The latter can be compact or not. The

non-compact ones are of the form a line bundle over a Riemann surface, which is in this

case necessarily a P1 – these are precisely the theories studied in [3] . The novelty here

is that one typically gets more than one such divisor, so one has to consider intersecting
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D4 branes. Like in [3] the theory on D4 branes of this kind is equivalent to the 2d qYM

theory on the corresponding Reimann surface, in this case, a P1. Since there is more

than one divisor typically, what one ends up getting is a 2d qYM theory on chains of

P1’s touching at points. The torus symmetries that rotate the P1’s around their equators

require them to intersect over their north and south poles only. The rank of the gauge group

can be different on different P1’s. So the new ingredient relative to [3] is understanding of

what happens at the intersections. Clearly, at the intersections, we should have to insert

certain point observables in the quantum Yang-Mills theory, that arise from integrating

out bifundamental matter where the D4 branes intersect. We’ll argue in section 3 that the

contribution of these can be determined by a consistency argument.

The physics of D4 branes wrapping compact 4-cycles is a much harder mathematical

problem without solution at present time. For example, in the case of local P2, we would

need to know the euler characters on moduli spaces of SU(N) instantons on P2, and

to our knowledge, these are known only for N = 2 [10] . Here however, we need large

N . Fortunately, understanding these does not turn out to be relevant for the black hole

problem, as we now explain.

Namely, not all the D4 branes are expected to give rise to large black holes in four

dimensions. This is true even in the compact case: Only the D4 branes wrapping 4-cycles

that are the so called “very ample” divisors give rise to black holes with macroscopic

horizons. In the present context, non-compactness of the irreducible divisor is a necessary

condition for it to be ample. Moreover, because the Calabi-Yau manifold is non-compact,

the 4-dimensional planck scale is going to infinity. Only by considering D4-branes which

are also non-compact as in [2][3] , one can keep the entropy of the black hole finite. So,

fortune is with us, and in all cases where we expect the D-branes on these manifolds to be

dual to black holes, the D-brane theory is computable.

There is one further subtlety. Because the D-branes are noncompact, different choices

of boundary conditions at infinity on the branes give rise to different theories. Moreover,

fixing the boundary conditions at infinity completely eliminates the moduli space of the

holomorphic cycles that the D4 branes wrap. In the present setting, this means that topo-

logical string amplitudes that receive contributions from holomorphic maps to cycles that

are far removed from the D4 brane, will have no relevance in describing the physics of the D-

branes. Turning this around, a given D4 brane theory cannot be dual to topological strings

on all of X, but only to the topological string on the local neighborhood of the D-brane in

X. This further constrains the class of models that can have non-perturbative completion

in terms of D4 branes and no D6 branes, but includes examples such as neighborhood of a

shrinking P2 or P1 × P1 in X, which we will study in this paper.

The paper has the following organization. In section 2 we review the conjecture of

[1] focusing in particular to certain subtleties that are specific to the non-compact Calabi-

Yau manifolds. We describe brane configurations which should be dual to topological

strings on the Calabi-Yau. In section 3 we explain how to compute the corresponding

partition functions Zbrane. The D4 brane theory turns out to be described by qYM theory

on necklaces and chains of P1. Where the different P1’s intersect, one gets insertions

of certain observables corresponding to integrating out bifundamental matter from the
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intersecting D4 branes. The qYM theory is solvable, and corresponding amplitudes can be

computed exactly. In section 4 we present our first example of local P2. We show that the

’t Hooft large N expansion of the D-brane amplitude is related to the topological strings

on the Calabi-Yau, and moreover and show that the version of the conjecture of [1] that

is natural for non-compact Calabi-Yau manifolds [3] is upheld. In section 5 we consider

an example of local P1 × P1. In section 6 we consider N D-branes on (a neighborhood of

an) Ak type ALE space. We show that at finite N our results coincide with that of H.

Nakajima for Euler characteristics of moduli spaces of U(N) instantons on ALE spaces,

while in the large N limit we find precise agreement with the conjecture of [1] .

2. Black holes on Calabi-Yau manifolds

Consider IIA string theory compactified on a Calabi-Yau manifold X. The effective d = 4,

N = 2 supersymmetric theory has BPS particles from D-branes wrapping holomorphic

cycles in X. We will turn off the D6 brane charge, and consider arbitrary D0, D2 and D4

brane charges.

2.1 D-brane theory

Pick a basis of 2-cycles [Ca] ∈ H2(X,Z), and a dual basis of 4-cycles [Da] ∈ H4(X,Z),

a = 1, . . . h1,1(X),

#(Da ∩ Cb) = δa
b.

This determines a basis for h1,1 U(1) vector fields in four dimensions, obtained by inte-

grating the RR 3-form C3 on the 2-cycles Ca. Under these U(1)′s D2 branes in class

[C] ∈ H2(X,Z) and D4 branes in class [D] ∈ H4(X,Z) carry electric and magnetic charges

Q2 a and Q4
b respectively:

[C] =
∑

a

Q2 a [Ca], [D] =
∑

a

Q4
a [Da],

We also specify the D0 brane charge Q0. This couples to the one extra U(1) vector multiplet

which originates from RR 1-form.

The indexed degeneracy

Ω(Q4
a, Q2 a, Q0)

of BPS particles in spacetime with charges Q0, Q2,a, Qa
4 can be computed by counting

BPS states in the Yang-Mills theory on the D4 brane [11]. This is computed by the

supersymmetric path integral of the four dimensional theory on D in the topological sector

with

Q0 =
1

8π2

∫

D
trF ∧ F, Q2 a =

1

2π

∫

Ca
2

trF.

Since D is curved, this theory is topologically twisted, in fact it is the Vafa-Witten twist

of the maximally supersymetric N = 4 theory on D.
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2.2 Gravity theory

When the corresponding supergravity solution exists, the massive BPS particles are black

holes in 4 dimensions, with horizon area given in terms of the charges

ABH =

√

1

3!
Cabc Q4

aQ4
bQ4

c|Q′
0|

where Cabc are the triple intersection numbers of X, and Q′
0 = Q0 − 1

2CabQ2aQ2b.
1 The

Bekenstein-Hawking formula relates this to the entropy of the black hole

SBH =
1

4
ABH .

For large charges, the macroscopic entropy defined by area, was shown to agree with the

microscopic one [11][12] . The corrections to the entropy-area relation should be suppressed

by powers in 1/ABH (measured in plank units).

Following [13], Ooguri, Strominger and Vafa conjectured that, just as the leading

order microscopic entropy can be computed by the classical area of the horizon and genus

zero free energy F0 of A-model topological string on X, the string loop corrections to the

macroscopic entropy can be computed from higher genus topological string on X:

ZY M (Qa
4, ϕ

a, ϕ0) = |Ztop(ta, gs)|
2 (2.1)

where

ZY M (Q4
a, ϕa, ϕ0) =

∑

Q2 a,Q0

Ω(Qa
4, Q2 a, Q0) exp(−Q0ϕ

0 − Q2 aϕ
a).

is the partition function of the N = 4 topological Yang-Mills with insertion of

exp( −
ϕ0

8π2

∫

trF ∧ F −
∑

a

ϕa

2π

∫

ωa ∧ trF ) (2.2)

where we sum over all topological sectors.2 The Kahler moduli of Calabi-Yau,

ta =

∫

Ca

k + iB

and the topological string coupling constant gs are fixed by the attractor mechanism:

ta = (
1

2
Q4

a + iϕa) gs

gs = 4π/ϕ0

Moreover, since the loop corrections to the macroscopic entropy are suppressed by powers

of 1/N2 where N ∼ (CabcQ
a
4Q

b
4Q

c
4)

1/3 [12] the duality in (2.1) should be a large N duality

in the Yang Mills theory.

1CabCbd = δa
d , Cab = CabcQ

c
4

2Above, ωa are dual to Ca,
R

Ca
ωb = δa

b.
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2.3 D-branes for large black holes

Evidence that the conjecture (2.1) holds was provided in [2][3] for a very simple class of

Calabi-Yau manifolds. We show in this paper that this extends to a broader class, provided

that the classical area of the horizon is large. This imposes a constraint on the divisor D,

which is what we turn to next.

Recall that for every divisor D on X there is a line bundle L on X and a choice of a

section sD such that D is the locus where this section vanishes,

sD = 0.

Different choices of the section correspond to homologous divisors on X, so the choice of

[D] ∈ H4(X,Z) is the choice of the first Chern-class of L (this is just Poincare duality but

the present language will be somewhat more convenient for us) .

The classical entropy of the black hole is large when [D] is deep inside the Kahler cone

of X, [12] , i.e. [D] is a “very ample divisor”. Then, intersection of [D] with any 2-cycle

class on X is positive, which guarantees that

Cabct
atbtc À 0.

Moreover, the attractor values of the Kahler moduli are also large and positive

Re(ta) À 0.

Interestingly, this coincides with the case when the corresponding twisted N = 4 theory is

simple. Namely, the condition that [D] is very ample is equivalent to

h2,0(D) > 0.

When this holds, [14],[10] , the Vafa-Witten theory can be solved through mass deformation.

In contrast, when this condition is violated, the twisted N = 4 theory has lines of marginal

stability, where BPS states jump, and background dependence.3

In the next subsection, we will give an example of a toric Calabi-Yau manifold with

configurations of D4 branes satisfying the above condition.

2.4 An Example

Take X to be

X = O(−3) → P2.

This is a toric Calabi-Yau which has a d = 2 N = (2, 2) linear sigma model description

in terms of one U(1) vector multiplet and 4 chiral fields Xi, i = 0, . . . 3 with charges

(−3, 1, 1, 1). The Calabi-Yau X is the Higgs branch of this theory obtained by setting the

D-term potential to zero,

|X1|
2 + |X2|

2 + |X3|
2 = 3|X0|

2 + rt

3We thank C. Vafa for discussions which led to the statements here.
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and modding out by the U(1) gauge symmetry. The Calabi-Yau is fibered by T3 tori,

corresponding to phases of the four X’s modulo U(1). Above, rt > 0 is the Kahler modulus

of X, the real part of t =
∫

Ct
k + iB. The Kahler class [k] is a multiple of the integral class

[Dt] which generates H2(X,Z), [k] = rt [Dt].

Consider now divisors on X. A divisor in class

[D] = Q [Dt]

is given by zero locus of a homogenous polynomial in Xi of charge Q in the linear sigma

model:

D : sQ
D(X0, . . . ,X3) = 0.

In fact sQ
D is a section of a line bundle over X of degree Q[Dt]. A generic such divisor

breaks the U(1)3 symmetry of X which comes from rotating the T 3 fibers. There are

special divisors which preserve these symmetries, obtained by setting Xi to zero,

Di : Xi = 0.

It follows that [D1,2,3] = [Dt], and that [D0] = −3[Dt]. The divisor D0 corresponds to the

P2 itself, which is the only compact holomorphic cycle in X.

As explained above, we are interested in D4

= 0X 3

= 0X 2 

= 0X 1 

= 0X 0

Figure 1: Local P2. We depicted the base

of the T 3 fibration which is the interior of

the convex polygon in R3. The shaded

planes are its faces.

branes wrapping divisors whose class [D] is pos-

itive, Q = Q4 > 0. Since the compact divisors

have negative classes, any divisor in this class is

non-compact 4-cycle in X. The divisors have a

moduli space MQ, the moduli space of charge Q

polynomials, which is very large in this case since

X is non-compact and the linear sigma model

contains a field X0 of negative degree. If D were

compact, the theory on the D4 brane would in-

volve a sigma model on MQ. Since D is not

compact, in formulating the D4 brane theory

we have to pick boundary conditions at infin-

ity. This picks a point in the moduli space MQ,

which is a particular divisor D.

Now, consider the theory on the D4 brane on D. Away from the boundaries of the

moduli space MQ, the theory on the D4 brane should not depend on the choice of the

divisor, but only on the topology of D. In the interior of the moduli space, D intersects

the P2 along a curve Σ of degree Q, which is generically an irreducible and smooth curve

of genus g = (Q−1)(Q−2)/2, and D is a line bundle over it. The theory on the brane is a

Vafa-Witten twist of the maximally supersymmetric N = 4 gauge theory with gauge group

G = U(1). At the boundaries of the moduli space, Σ and D can become reducible. For

example, Σ can collapse to a genus zero, degree Q curve by having sQ = XQ
1 , corresponding

to having D = Q · D1. Then D is an O(−3) bundle over P1, and the theory on the D4

– 7 –
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brane wrapping D is the twisted N = 4 theory with gauge group G = U(Q) with scalars

valued in the normal bundle to D.

Both of these theories were studied recently in [3] in precisely this context. In both

cases, the theory on the D4 brane computes the numbers of BPS bound-states of D0 and

D2 brane with the D4 brane. Correspondingly, the topological string which is dual to this

in the 1/Q expansion describes only the maps to X which fall in the neighborhood of D.

In other words, the D4 brane theory is computing the non-perturbative completion of the

topological string on XD where XD is the total space of the normal bundle to D in X. It

is not surprising that the YM theory on the (topologically) distinct divisors D gives rise

to different topological string theories – because D is non-compact, different choices of the

boundary conditions on D give rise to a-priori different QFTs.

It is natural to ask if there is a choice of the divisor D for which we can expect the

YM theory theory to be dual to the topological string on X = O(−3) → P2. Consider a

toric divisor in the class [D] = Q[Dt] of the form

D = N1D1 + N2D2 + N3D3 (2.3)

where Q = N1 + N2 + N3 for Ni positive integers. The D4 brane on D will form

bound-states with D2 branes running around the edges of the toric base, and arbitrary

number of the D0 branes. Recall furthermore that, because X has U(1) symmetries, the

topological string on X localizes to maps fixed under the torus actions, i.e. maps that in

the base of the Calabi-Yau project to the edges. It is now clear that the D4 branes on D in

(2.3) are the natural candidate to give the non-perturbative completion of the topological

string on X. We will see in the next sections that this expectation is indeed fully realized.

The considerations of this section suggest that of all the toric Calabi-Yau manifolds,

only a few are expected to have non-perturbative completions in terms of D4 branes. The

necessary condition translates into having at most one compact 4-cycle in X, so that

the topological string on the neighborhood XD of an ample divisor can agree with the

topological string on all of X. Even so, the available examples have highly non-trivial

topological string amplitudes, providing a strong test of the conjecture.

3. The D-brane partition function

In the previous section we explained that D4-branes wrapping non-compact, toric divisors

should be dual to topological strings on the toric Calabi-Yau threefold X. The divisor D

in question are invariant under T 3 action on X, and moreover generically reducible, as the

local P2 case exemplifies. In this section we want to understand what is the theory on the

D4 brane wrapping D.

Consider the local P2 with divisor D as in (2.3) . Since D is reducible, the theory

on the branes is a topological N = 4 Yang-Mills with quiver gauge group G = U(N1) ×

U(N2) × U(N3). The topology of each of the three irreducible components is

Di : O(−3) → P1

– 8 –
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In the presence of more than one divisor, there will be additional bifundamental hyper-

multiplets localized along the intersections. Here, D1, D2 and D3 intersect pairwise along

three copies of a complex plane at Xi = 0 = Xj, i 6= j.

As shown in [2][3] , the four-dimensional twisted N = 4 gauge theory on

O(−p) → P1

with (2.2) inserted is equivalent to a cousin of two dimensional Yang-Mills theory on the

base Σ = P1 with the action

S =
1

gs

∫

Σ
tr Φ ∧ F +

θ

gs

∫

Σ
tr Φ ∧ ωΣ −

p

2gs

∫

Σ
tr Φ2 ∧ ωΣ (3.1)

where θ = ϕ1/2πgs. The four dimensional theory localizes to constant configurations

along the fiber. The field Φ(z) comes from the holonomy of the gauge field around the

circle at infinity:
∫

fiber
F (z) =

∮

S1
z,∞

A(z) = Φ(z). (3.2)

Here the first integral is over the fiber above a point on the base Riemann surface with

coordinate z. The (3.1) is the action, in the Hamiltonian form, of a 2d YM theory, where

Φ(z) = gs
∂

∂A(z)

is the momentum conjugate to A. However, the theory is not the ordinary YM theory in

two dimensions. This is because the the field Φ is periodic. It is periodic since it comes

from the holonomy of the gauge field at infinity. This affects the measure of the path

integral for Φ is such that not Φ but exp(iΦ) is a good variable. The effect of this is that

the theory is a deformation of the ordinary YM theory, the “quantum” YM theory [3] .

Integrating out the bifundamental matter fields on the intersection should, from the

two dimensional perspective, correspond to inserting point observables where the P1’s

meet in the P2 base. We will argue in the following subsections, that the point observable

corresponds to
∑

R

TrR V −1
(i) TrR V(i+1) (3.3)

where

V(i) = ei Φ(i)−i
H

A(i)
, V(i+1) = ei Φ(i+1)

The point observables Φ(i) and Φ(i+1) are inserted where the P1’s intersect, and the in-

tegral is around a small loop on P1
i around the intersection point. The sum is over all

representations R that exist as representations of the gauge groups on both P1
i and P1

i+1.

This means effectively one sums over the representations of the gauge group of smaller

rank.

By topological invariance of the YM theory, the interaction (3.3) depends only on

the geometry near the intersections of the divisors, and not on the global topology. For

intersecting non-compact toric divisors, this is universal, independent of either D or X. In

the following subsection we will derive this result.

– 9 –
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CC

C

C

D

b

a+b

a

D

L

R
1S

1Sa+b

1Sa+bb

Figure 2: D4-branes are wrapped on the divisors DL,R = C2. The three boldfaced lines in the

figure on the left correspond to three disks Ca, Cb, Ca+b over which the a, b and (a + b) 1-cycles of

the lagrangian T 2 × R fibration degenerate. The cycles of the T 2 which are finite are depicted in

the figure on right.

3.1 Intersecting D4 branes

In this subsection we will motivate the interaction (3.3) between D4-branes on intersecting

divisors. The interaction between the D4 branes comes from the bifundamental matter

at the intersection and, as explained above, since the matter is localized and the theory

topological, integrating it out should correspond to universal contributions to path integral

over DL and DR that are independent of the global geometry. Therefore, we might as well

take D’s, and X itself to be particularly simple, and the simplest choice is two copies of

the complex 2-plane C2 in X = C3. We can think of the pair of divisors as line bundles

fibered over disks Ca and Cb. One might worry that something is lost by replacing Σ by

a non-compact Riemann surface, but this is not the case – as was explained in [3] because

the theory is topological, we can reconstruct the theory on any X from simple basic pieces

by gluing, and what we have at hand is precisely one of these building blocks.

The fields at the intersection Ca+b = DL ∩DR transform in the bifundamental (M, N̄ )

representations of the U(M) × U(N) gauge groups on the D-branes. We will first argue

that the effect of integrating them out is insertion of

∑

R

TrR exp (i

∮

S1
b

A(L)) TrR exp (i

∮

S1
b

A(R)) (3.4)

where
∮

S1
b
A(L) and

∮

S1
b
A(R) are the holonomies of the gauge fields on DL and DR

respectively around the circle at infinity on the cap Ca+b, i.e. S1
b = ∂Ca+b, see figure 2. (If

this notation seems odd, it will stop being so shortly).

We will argue this by consistency as follows.4 First, note that there is correlation

between turning of certain fluxes on DL and DR. To see this note that, if one adds D2

branes along Ca+b, the D2 branes have the effect of turning on flux on both DL and DR.

Consider for simplicity the case where M = 1 = N . The fact that the corresponding fluxes

are correlated is the statement that
∫

F (L) =
∫

F (R) where integrals are taken over the

4We thank C. Vafa for suggesting use of this approach.
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fibers over a point on Ca+b in the divisors DL and DR respectively, where we view DL,R

as fibrations over Ca+b. Since S1
b = ∂Ca+b this is equivalent to

∮

S1
a+b

A(L) =

∮

S1
a+b

A(R) (3.5)

where S1
a+b is the one cycle in X that vanishes over Ca+b (this cycle is well defined in

X as we will review shortly). This is consistent with insertion of

∑

n∈Z

exp (in

∮

S1
b

A(L)) exp (in

∮

S1
b

A(R)). (3.6)

because
∮

S1
b
A(L,R) and

∮

S1
a+b

A(L,R) are canonically conjugate, (one way to see this is to

consider the qYM theory one gets on Ca+b. Then insertion of (3.6) implies (3.5) as an

identity inside correlation functions). For general M , N gauge and Weyl invariance imply

precisely (3.4) .

We must still translate the operators that that appear in (3.4) , in terms of operators

Φ(L,R) and A(L,R) in the qYM theories on Ca and Cb. This requires understanding of

certain aspects of T 3 fibrations. While any toric Calabi-Yau threefold is a lagrangian T 3

fibration, it is also a special lagrangian T 2×R fibration, where over each of the edges in the

toric base a (p, q) cycle of the T 2 degenerates. The one-cycle which remains finite over the

edge is ambiguous. In the case at hand, we have C3 with two D4 branes, an this provides

a particularly natural choice. Namely, for cycle which is finite over Ca chose the cycle that

vanishes over the other edge of DL, and similarly for Cb and DR. This makes the gluing

rules particularly simple.5 This is described in figure 2. In the figure, the 1-cycles of the

T 2 that vanish over Ca, Cb and Ca+b are S1
a, S1

b , S1
a+b, respectively. These determine the

point observables Φ’s in the qYM theories on the corresponding disk. The 1-cycles that

remain finite are S1
a+b, S1

b and S1
a+b, in order. It follows that

∮

S1
b

A(L) =

∮

S1
a+b

A(L) − Φ(L),

∮

S1
b

A(R) = Φ(R),

which justifies (3.3) . In the next subsection we will compute the qYM amplitudes with

these observables inserted.

3.2 Partition functions of qYM

Like ordinary two dimensional YM theory, the qYM theory is solvable exactly [3] . In this

subsection we will compute the YM partition functions with the insertions of observables

(3.3) . In [3] it was shown that qYM partition function Z(Σ) on an arbitrary Riemann

surface Σ can be computed by means of operatorial approach. Since the theory is invariant

under area preserving diffeomorphisms, knowing the amplitudes for Σ an annulus A, a pant

P and a cap C, completely solves the theory – amplitudes on any Σ can be obtained from

5In the language on next subsection, this corresponds to inserting qpC2(R) as a propagator to get O(−p)

line bundle over P
1.
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this by gluing. In the present case, we will only need the cap and the annulus amplitudes,

but with insertions of observables. Since the Riemann surfaces in question are embedded

in a Calabi-Yau, we are effectively sewing Calabi-Yau manifolds, so one also has to keep

track of the data of the fibration. The rules of gluing a Calabi-Yau manifold out of C3

patches are explained in [15] and we will only spell out their consequences in the language

of 2d qYM.

In the previous subsection, the theory on divisors DL and DR in C3 was equivalent

to qYM theories on disks Ca and Cb, with some observable insertions. These are Riemann

surfaces with a boundary, so the corresponding path integrals define states in the Hilbert

space of qYM theory on S1. Keeping the holonomy U = Pei
H

A fixed on the boundary,

the corresponding wave function can be expressed in terms of characters of irreducible

representations R of U(N) as:

Z(U) =
∑

R

ZR TrRU

The first thing we will answer is how to compute the corresponding states, and then we

will see how to glue them together. As we saw in the previous section, the choice of the

coordinate
∮

S1 A on the boundary is ambiguous, as the choice of the cycle which remains

finite is ambiguous. This ambiguity is related to the choice of the Chern class of a line

bundle over a non-compact Riemann surface, i.e. how the divisors DL,R are fibered over

the corresponding disks. The simplest choice is the one that gives trivial fibration, and

this is the one we made in figure 2 (this corresponds to picking the cycle that vanishes over

Ca+b).

The partition function on a disk with trivial bundle over it and no insertions is

Z(C)(U) =
∑

R∈U(N)

S0R eiθC1(R) TrRU, (3.7)

Above, C1(R) is the first casimir of the representation R, and SRP(N, gs) is a relative

of the S-matrix of the U(N) WZW model

SRQ(N, gs) =
∑

w∈SN

ε(w)q−(R+ρN )·w(Q+ρN ), (3.8)

where

q = exp(−gs)

and SN is Weyl group of U(N) and ρN is the Weyl vector.6

Sewing ΣL and ΣR is done by

Z(ΣL ∪ ΣR) =

∫

dU Z(ΣL)(U) Z(ΣR)(U−1) =
∑

R

ZR(ΣL)ZR(ΣR)

6The normalization of the path integral is ambiguous. In our examples in sections 4-6 we will choose it

in such a way that the amplitudes agree with the topological string in the large N limit.
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For example, the amplitude corresponding to Σ = P1 with O(−p) bundle over it and no

insertions can be obtained by gluing two disks and an annulus with O(−p) bundle over it:

Z(A, p)(U1, U2) =
∑

R∈U(N)

qpC2(R)/2 eiθC1(R) TrRU1 TrRU2 (3.9)

This gives

Z(P 1, p) =
∑

R

(S0R)2qpC2(R)/2eiθC1(R) (3.10)

In addition we will need to know how to compute expectation values of observables in

this theory. As we will show in the appendix B, the amplitude on a cap with a trivial line

bundle and observable TrQ eiΦ−in
H

S1 A inserted equals

Z(C, TrQ eiΦ−in
H

S1 A)(U) =
∑

R

q
n
2

C2(Q)SQ̄R(N, gs)TrRU. (3.11)

where U is the holonomy on the boundary.

It remains to compute the expectation value of the observables in (3.3) in the two-

dimensional theory on Ca and Cb. The amplitude on the intersecting divisors DL, DR

is

Z(V )(U (L), U (R)) =
∑

Q∈U(M),P∈U(N)

VQP(M,N)TrQU (L)TrPU (R)

VQP(M,N) =
∑

R∈U(M)

SQR̄(M,gs) q
1
2
C

(M)
2 (R) SRP(N, gs) (3.12)

In the above, U (L,R) is the holonomy at the boundary of Ca and Cb.

When M = N , there is a simpler expression for the vertex amplitude in (3.12). Using

the definition of SPR (3.8) and summing over R we have

VPQ = θN (q) q−
1
2
C2(P) SPQq−

1
2
C2(Q) (3.13)

and where θ(q) =
∑

m∈Z
q

m2

2 . This is related to the familiar realization in WZW

models of the relation

STS = (TST )−1

between SL(2,Z) generators S and T in WZW models where

TRQ = q
1
2
C2(R)δRQ, S−1

RP(gs, N) = SRP(−gs, N) = SR̄P(gs, N). (3.14)

The difference is that there is no quantization of the level k here. Even at a non-integer

level, this is more straightforward in the SU(N) case, where the theta function in (3.13)

would not have appeared.
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3.3 Modular transformations

The partititon functions of D4 branes on various divisors with chemical potentials

S4d =
1

2gs

∫

tr F ∧ F +
θ

gs

∫

tr F ∧ ω,

turned on, are computing degeneracies of bound-states of Q2 D2 branes and Q0 D0 branes

with the D4 branes, where

Q0 =
1

8π2

∫

tr F ∧ F, Q2 =
1

2π

∫

tr F ∧ ω, (3.15)

so the YM amplitudes should have an expansion of the form

ZqYM =
∑

q0,q1

Ω(Q0, Q2, Q4) exp

[

−
4π2

gs
Q0 −

2πθ

gs
Q2

]

. (3.16)

The amplitudes we have given are not expansions in

exp(−1/gs), but rather in exp(−gs), so the existence of the (3.16) expansion is not ap-

parent at all. The underlying N = 4 theory however has S duality that relates strong and

weak coupling expansions, so we should be able to make contact with (3.16) .

Since amplitudes on more complicated manifolds are obtained from the simpler ones

by gluing, it will suffice for us to show this for the propagators, vertices and caps. Consider

the annulus amplitude (3.9) Using the Weyl-denominator form of the U(N) characters

TrRU = ∆H(u)−1
∑

w∈SN
(−)ωeω(iu)·(R+ρN ) we can rewrite Z(A, p) as

Z(A, p)(U, V ) = ∆H(u)−1∆H(v)−1
∑

n∈ZN

∑

w∈SN

q
p
2
n2

en(iu−w(iv))

which is manifestly a modular form,7 which we can write

Z(A, p)(U, V ) = ∆H(u)−1∆H(v)−1
(gsp

2π

)−N
2

∑

m∈ZN

∑

w∈SN

q̃
1
2p

(

m−u−w(v)
2π

)2

(3.17)

where in terms of q̃ = e−4π2/gs . In the above, the eigenvalues Ui of U are written as

Ui = exp(iui), and ∆H(u) enters the Haar measure:
∫

dU =

∫

∏

i

dui∆H(u)2

Note that, in gluing, the determinant ∆H(u)2 factors cancel out, and simple degeneracies

will be left over.

Similarly, the vertex amplitude (3.12) corresponding to intersection of N and M D4

branes can be written as (see appendix C for details):

Z(U, V ) = ∆H(u)−1∆H(v)−1θM (q)
∑

m∈ZM

q−
1
2
m2

em·v

×
∑

w∈SN

(−)w
∑

n∈ZN

en(·w(iu)+iv−gs(ρN−ρM )) (3.18)

7Recall, θ(τ, u) = (−iτ )−
1

2 e−iπ u
2

τ θ(− 1
τ
, u

τ
), where θ(τ, u) =

P

n∈Z
eiτn2

e2πiu.
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N

N1

2 N 3

Figure 3: Local P2, depicted as a toric web diagram. The numbers of D4 branes wrapping the

torus invariant non-compact 4-cycles are specified.

where v, ρM are regarded as N dimensional vectors, the last N − M of whose entries

are zero. We see that Z(U, V ) is given in terms of theta functions, so it is modular form,

its modular transform given by

Z(U, V ) = ∆H(u)−1∆H(v)−1
( gs

2π

)−M/2
θM(q̃)

∑

m∈ZM

q̃−
1
2
(m+iv/2π)2

∑

w∈SN

(−)w
∑

n∈ZN

en(·w(iu)+iv−gs(ρN−ρM )) (3.19)

In a given problem, it is often easier to compute the degeneracies of the BPS states from

the amplitude as a whole, rather than from the gluing the S-dual amplitudes as in (3.19) .

Nevertheless, modularity at the level of vertices, propagators and caps, demonstrates that

the 1/gs expansion of our amplitudes does exist in a general case.

4. Branes and black holes on local P2
.

We will now use the results of the previous section to study black holes on X = O(−3) →

P2. As explained in section 2, to get large black holes on R3,1 we need to consider D4 branes

wrapping very-ample divisors on X, which are then necessarily non-compact. Moreover, the

choice of divisor D that should give rise to a dual of topological strings on X corresponds

to

D = N1D1 + N2D2 + N3D3

where Di, i = 1, 2, 3 are the toric divisors of section 2.

Using the results of section 3, it is easy to compute the amplitudes corresponding to

the brane configuration. We have N1 ≥ N2 ≥ N3 D4 branes on three divisors of topology

Di = O(−3) → P1. From each, we get a copy of quantum Yang Mills theory on P1 with

p = 3, as discussed in section 3. From the matter at the intersections, we get in addition,

insertion of observables (3.3) at two points in each P1.
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All together this gives:

ZqY M = α
∑

Ri∈U(Ni)

VR2R1(N2, N1)VR3R2(N3, N2)VR3R1(N3, N1)
3

∏

j=1

q
3C2(Ri)

2 eiθiC1(Ri)

(4.1)

Note that in the physical theory there should be only one chemical potential for D2-

branes, corresponding to the fact that H2(X,Z) is one dimensional. In the theory of the

D4 brane we H2(D,Z) is three dimensional, generated by the 3 P1’s in D – the three

chemical potentials θi above couple to the D2 branes wrapping these. While all of these D2

branes should correspond to BPS states in the Yang-Mills theory, not all of them should

correspond to BPS states once the theory is embedded in the string theory. Because the

three P1’s that the D2 brane wrap are all homologous in H2(X,Z),

[P1
1] − [P1

3] ∼ 0, [P1
2] − [P1

3] ∼ 0

there will be D2 brane instantons that can cause those BPS states that carry charges in

H2(D,Z) to pair up into long multiplets. Decomposing H2(D,Z) into a H2(D,Z)|| =

H2(X,Z) and H2(D,Z)⊥, it is natural to turn off the the chemical potentials for states

with charges in H2(D,Z)⊥. This corresponds to putting

θi = θ, i = 1, 2, 3.

For some part, we will keep the θ-angles different, but there is only one θ natural in the

theory.

The normalization α of the path integral is chosen in such a way that ZqY M has

chiral/anti-chiral factorization in the large Ni limit (see 4.6 and 4.10 below).

α = q
−(ρ2

N2
+

N2
24

)
q
−2(ρ2

N3
+

N3
24

)
e

(N1+N2+N3)θ2

6gs q
(N1+N2+N3)3

72

The partition function simplifies significantly if we take equal numbers of the D4 branes

on each Di,

Ni = N, i = 1, 2, 3

since in this case, we can replace (3.12) form of the vertex amplitude with the simpler

(3.13) , and the D-brane partition function becomes

ZqY M = αθ3N (q)
∑

R1,R2,R3∈U(N)

SR1R̄2
(gs, N)SR2R̄3

(gs, N)SR3R̄1
(gs, N)

×
3

∏

j=1

q
C2(Ri)

2 eiθiC1(Ri) (4.2)

In the following subsections we will first take the large Ni limit of ZqY M to get the

closed string dual of the system. We will then use modular properties of the partition

function to compute the degeneracies of the BPS states of D0-D2-D4 branes.
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4.1 Black holes from local P2

According to the conjecture of [1] (or more precisely, its version for the non-compact Calabi-

Yau manifolds proposed in [3] ) the large N limit of the D-brane partition function Zbrane,

which in our case equals ZqY M , should be given by

ZqY M (D, gs, θ) ≈
∑

α

|Ztop
α (t, gs)|

2

where

t =
1

2
(N1 + N2 + N3)gs − iθ

since [D] = (N1 + N2 + N3)[Dt] where [Dt] is dual to the class that generates H2(X,Z).

In the above, the two expressions should equal up to terms of order O(exp(−1/gs)), hence

the “approximate” sign. The sum over α is the sum over chiral blocks which should

correspond to the boundary conditions at infinity of X. More precisely, the leading chiral

block should correspond to including only the normalizable modes of topological string on

X, which count holomorphic maps to P2, the higher ones containing fluctuation in the

normal direction [3][9] . We will see below that this prediction is realized precisely.

The Hilbert space of the qYM theory, spanned by states labeled by representations R

of U(N), at large N splits into

HqY M ≈ ⊕` H
+
` ⊗H−

`

where H+
l and H−

l are spanned by representations R+ and R− with small numbers of boxes

as compared to N , and ` is the U(1) charge. Correspondingly, the qYM partition function

also splits as

ZqY M ≈
∑

`

Z+
` Z−

` ,

where Z±
` are the chiral and anti-chiral partitions. We will now compute these, and show

that they are given by topological string amplitudes.

i. The Ni = N case.

We’ll now compute the large N limit of the D-brane partition function (4.2) for Ni = N ,

i = 1, 2, 3. At large N , the U(N) Casimirs in representation R = R+R̄−[`R] are given by

C2(R) = κR+ + κR− + N(|R+| + |R−|) + N`R
2 + 2`R(|R+| − |R−|),

C1(R) = N`R + |R+| − |R−| (4.3)

where

κR =
N−1
∑

i=1

Ri(Ri − 2i + 1)

and |R| is the number of boxes in R.

– 17 –



J
H
E
P
1
2
(
2
0
0
6
)
0
1
8

The S-matrix SRQ is at large N given in [9]

q−(ρ2+ N
24

)SRQ(−gs, N) = M(q−1)η(q−1)N (−)|R+|+|R−|+|Q+|+|Q−|

×qN`R`Qq`Q(|R+|−|R−|)q`R(|Q+|−|Q−|)q
N(|R+|+|R−|+|Q+|+|Q−|)

2

×q
κR+

+κR−
2

∑

P

q−N |P |(−)|P |ĈQT
+R+P (q)ĈQT

−R−P T (q). (4.4)

The amplitude ĈRPQ(q) is the topological vertex amplitude of [15] .8 In (4.4) M(q)

and η(q) are MacMahon and Dedekind functions.

Putting this all together, let us now parameterize the integers `Ri
as follows

3` = `R1 + `R2 + `R3 , 3n = `R1 − `R3 , 3k = `R2 − `R3 .

It is easy to see that the sum over n and k gives delta functions: at large N

ZqY M (θi, gs) ∼ δ( N(θ1 − θ3) ) δ( N(θ2 − θ3) ) × Zfinite
qY M (θ, gs) (4.5)

where θi = θ in the finite piece. As we will show in Sec. 4.2 there is the same δ-

function singularity as in the partition function of the bound-states of N D4 branes. There

it will be clear that it comes from summing over D2 branes with charges in H2(X,D)⊥, as

mentioned at the beginning of this section. The finite piece in (4.5) is given by

Zfinite
qY M (N, θ, gs) =

∑

m∈Z

∑

P1,P2,P3

(−)
P3

i=1 |Pi|Z+
P1,P2,P3

(t + mgs)Z
+
P T

1 ,P T
2 ,P T

3
(t̄ − mgs). (4.6)

The chiral block in (4.6) is the topological string amplitude on X = O(−3) → P2,

Z+
P1,P2,P3

(t) = Ẑ0(gs, t)e
−t0

P

i |Pi| (4.7)
∑

R1,R2,R3

e−t
P

i |Ri|q
P

i κRi ĈRT
2 R1P T

1
(q) ĈRT

3 R2P T
2

(q) ĈRT
1 R3P T

3
(q)

where t0 = −1
2Ngs and the Kahler modulus t is (we will return to the meaning of t0

shortly):

t =
3Ngs

2
− iθ.

More precisely, the chiral block with trivial ghosts Pi = 0,

Z+
0,0,0(t, gs) = Ztop(t, gs)

is exactly equal to the perturbative closed topological string partition function for X =

O(−3) → P2, as given in [15] . This exactly agrees with the prediction of [1] .

The prefactor Ẑ0(gs, t) is given by

Ẑ0(gs, t) = e
− t3

18g2
s M3(q−1)η

t
gs (q−1)θ

t
gs (q)

8The conventions of this paper and [15] differ, as here q = e−gs , but qthere = egs , consequently the

topological vertex amplitude CRPQ of [15] is related to the present one by ĈRPQ(q) = CRPQ(q−1).
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As explained in [3] the factor η
t

gs ∼ η
3N
2 comes from bound states of D0 and D4 branes

[10] without any D2 brane charge, and moreover, it has only genus zero contribution

perturbatively.

η
t

gs ∼ exp

(

−
π2t

6g2
s

)

+ (non − perturbative)

The factor θ
t

gs comes from the bound states of D4 branes with D2 branes along each of

three the non-compact toric legs in the normal direction to the P2, and without any D0

branes. This gives no perturbative contributions

θ
t

gs ∼ 1 + (non − perturbative)

The subleading chiral blocks correspond to open topological string amplitudes in X with

D-branes along the fiber direction to the P2, which can be computed using the topological

vertex formalizm [15] . The appearance of D-branes was explained in [9] where they were

interpreted as non-normalizable modes of the topological string amplitudes on X. The

reinterpretation in terms of non-normalizable modes of the topological string theory is a

consequence of the open-closed topological string duality on [16] . While this is a duality

in the topological string theory, in the physical string theory the open and closed string

theory are the same only provided we turn on Ramond-Ramond fluxes. We cannot do this

here however, since this would break supersymmetry, and the only correct interpretation

is the closed string one.

To make contact with this, define

Z+(U1, U2, U3) =
∑

R1,R2,R3

Z+
R1,R2,R3

TrR1U1 TrR2U2 TrR3U3.

where Ui are unitary matrices. This could be viewed as an open topological string am-

plitude with D-branes, or more physically, as the topological string amplitude, with non-

normalizable deformations turned on. These are not most general non-normalizable defor-

mations on X, but only those that preserve torus symmetries – correspondingly they are

localized along the non-compact toric legs, just like the topological D-branes that are dual

to them are. The non-normalizable modes of the geometry can be identified with [16]

τn
i = gstr(U

n
i )

where the trace is in the fundamental representation. We can then write (4.6) as

Zfinite ∼

∫

dU1 dU2 dU3 |Z+(U1, U2, U3)|
2

where we integrate over unitary matrices provided we shift

U → Ue−t0

where t0 = −1
2Ngs. This shift is the attractor mechanism for the non-normalizable modes

of the geometry [9] . In terms of the natural variables tni, related by τn
i = exp(−tni ) to τ ’s

we have

tni = nt0 (4.8)
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This comes about as follows [9] . First note that size of any 2-cycle C in the geometry

should be fixed by the attractor mechanism to equal its intersection with the 4-cycle class

[D] of the D4 branes, in this case [D] = 3N [Dt]. The relevant 2-cycle in this case is a disk

C0 ending on the topological D-brane. The real part of tni measures the size of an n-fold

cover of this disk (there is no chemical potential, i.e. t0 is real, since there is associated

BPS state of finite mass). Then (4.8) follows because

#(C0 ∩ D) = −N.

To see this note that in homology, the class 3N [Dt] could equally well be represented by

−N D-branes on the base P2 and the latter has intersection number 1 with C0. The factor

of n in (4.8) comes about since tn corresponds to the size of the n-fold cover of the disk.

ii. The general Ni case.

The case N1 > N2 > N3 is substantially more involved, and in particular, the large

N limit of the amplitudes (3.12)(4.1) is not known. However, as we will explain in the

appendix D, turning off the U(1) factors of the gauge theory, the large N limit can be

computed, and we find a remarkable agreement with the conjecture of [1] .

Let us focus on the leading chiral block of the amplitude. The large N , M limit of

the interaction VQR(M,N) (more precisely, the modified version of it to turn off the U(1)

charges) is

VQR ∼ βM q
(|Q+|+|Q−|)(N−M)

2 q
(|R+|+|R−|)(M−N)

2

q−
(κR+

+κR−
+κQ+

+κQ−
)

2 WQ+R+(q) WQ−R−(q) (4.9)

where

βM = q(ρ
2
M + M

24 )M(q−1)ηM (q−1)θM (q) .

In (4.9) the WPR is related to the topological vertex amplitude as WPR(q)=(−)|P |+|R|×

Ĉ0P T R(q)qκR/2. It is easy to see that for N = M this agrees with the large N limit of the

simpler form of the VRQ amplitude in (3.13). It is easy to see that that the leading chiral

block of (4.1) is

ZqY M ∼ Z+
0,0,0(t)Z

−
0,0,0(t̄) (4.10)

where Z+
0,0,0(t) is

Z+
0,0,0 = Ẑ0

∑

R+,Q+,p+

WR+Q+(q)WQ+P+(q)WP+R+(q)e−t(|R+|+|Q+|+|P+)

which is the closed topological string amplitude on X. In particular, this agrees with the

amplitude in (4.7) . In the present context, the Kahler modulus t is given by

t =
1

2
(N1 + N2 + N3)gs − iθ.

This is exactly as dictated by the attractor mechanism corresponding to the divisor [D] =

(N1 + N2 + N3)[Dt]!
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The higher chiral blocks will naturally be more involved in this case. Some of the

intersection numbers fixing the attractor positions of ghost branes are ambiguous, and cor-

respondingly, far more complicated configurations of non-normalizable modes are expected.

Recently, phase transitions in 2d qYM theory on P1 were studied in [17][18][19][20][21]

, where it was shown that the theory has a phase transition when the chern class of the

normal bundle to the branes is not positive. It would be very interesting to study the phase

transitions in the present case.

4.2 Branes on local P2

In this and subsequent section we will discuss the degeneracies of BPS states that follow

from (4.1) . Using the results of (3.17) and (3.18) or by direct computation, it is easy to

see that ZqY M is a modular form. Its form however is the simplest in the case

N1 = N2 = N3 = N,

so let us treat this first.

i. Degeneracies for Ni = N.

In this case, the form of the partition function written in (4.2) is more convenient. By

trading the sum over representations and over the Weyl-group, as in (3.18) , for sums over

the weight lattices, the partition function of BPS states is

ZqY M (N, θi, gs) = β
∑

w∈SN

(−)w
∑

n1,n2,n3∈ZN

q
1
2

P3
i=1 n2

i qw(n1)·n2+n2·n3+n3·n1 ei
P3

i=1 θie(N)·ni

(4.11)

where e(N) = (1, . . . , 1) and β = αθ3N (q). The amplitudes depend on the permutations

w only through their conjugacy classes, consequently we have:

ZqY M = β
∑

~K

d( ~K) ZK1 × . . . × ZKr (4.12)

where ~K labels a partition of N into natural numbers N =
∑r

a=1 Ka, and d( ~K) is the

number of elements in the conjugacy class of SN , the permutation group of N elements,

corresponding to having r cycles of length Ka, a = 1, . . . , r, and

ZK(θi, gs) = (−)wK

∑

n1,n2,n3∈ZK

q
1
2

P3
i=1 n2

i qwK(n1)·n2+n2·n3+n3·n1 ei
P3

i=1 θie(K)·ni (4.13)

Here wK stands for cyclic permutation of K elements. Note that the form of the

partition function (4.12) suggests that ZqY M is counting not only BPS bound states, but

also contains contribution from marginally bound states corresponding to splitting of the

U(N) to

U(N) → U(K1) × U(K2) × . . . × U(Kr)
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In each of the sectors, the quadratic form is degenerate. The contribution of bound states

of N branes ZN diverges as

ZN (θi, gs) ∼
∑

m1,m2∈Z

eiNm1(θ1−θ3)eiNm2(θ2−θ3) = δ(N(θ1 − θ3))δ(N(θ2 − θ3))

This is exactly the type of the divergence we found at large N in the previous subsection.

This divergence should be related to summing over D2 branes with charges in H2(D,Z)⊥

– these apparently completely decouple from the rest of the theory.

More precisely, writing U(N) = U(1)×SU(N)/ZN , this will have a sum over ’t Hooft

fluxes which are correlated with the fluxes of the U(1). Then, ZN is a sum over sectors of

different N -ality,

ZN (θi, gs) = (−)wN

N−1
∑

Li=0

∑

`i∈Z+
Li
N

q
N
2

(`1+`2+`3)2eiN
P

i θi`i

∑

m∈Z3(N−1)+~ξ(Li)

q
1
2
mT MN m

where MN is a non-degenerate 3(N − 1) × 3(N − 1) matrix with integer entries and ~ξi is

a shift of the weight lattice corresponding to turning on ’t Hooft flux. Explicitly,

ξa
i =

N − a

N
Li, i = 1, 2, 3 a = 0, . . . N − 1

where MN is 3(N − 1) × 3(N − 1) matrix

MN =





MN WN MN

W T
N MN MN

MN MN MN



 (4.14)

whose entries are

MN =



















2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0

. . . . . . . .

. . . . . . . .

0 0 0 . . . −1 2



















(4.15)

and

WN =



















−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0

0 0 −1 . . . . 0

. . . . . . . .

. . . . . . . .

−1 0 0 . . . 0 −1



















(4.16)

We can express ZN in terms of Θ-functions

ZN (θi, gs) = (−)wN δ(N(θ1 − θ3))δ(N(θ2 − θ3))

N−1
∑

Li=0

Θ1[a(Li), b](τ) Θ3N−3[a(Li),b](τ̂ )
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where

Θk[a, b](τ) =
∑

n∈Zk

eπiτ(n+a)2 e2πinb

and

τ =
igs

2π
N, τ̂ =

igs

2π
MN

a =
L1 + L2 + L3

N
, b =

N

2π
θ, aL = ~ξ(L), b = 0,

The origin of the divergent factor we found is now clear: from the gauge theory perspec-

tive it simply corresponds to a partition function of a U(1) ∈ U(N) gauge theory on a

4−manifold whose intersection matrix is degenerate: #(Ci ∩ Cj) = 1, i, j = 1, 2, 3. More

precisely, to define the intersection form of the reducible four-cycle D, note that D is ho-

mologous to the (punctured) P2 in the base, with precisely the intersection form at hand.

The contribution of marginally bound states with multiple U(1) factors have at first sight a

worse divergences, however these can be regularized by ζ-function regularization to zero.9

This is a physical choice, since in these sectors we expect the partition function to vanish

due to extra fermion zero modes [10][22].

To extract the black hole degeneracies we use that the matrix MN is non-degenerate

and do modular S-transformation using

Θ[a, b](τ) = det(τ)−
1
2 e2πiabΘ[b,−a](−τ−1)

This brings ZN to the form

ZN (θi, gs) = δ(N(θ1 − θ3))δ(N(θ2 − θ3))(−)wN

(

2π

Ngs

) 1
2

(

2π

gs

)
3(N−1)

2

det−
1
2MN

N−1
∑

Li=0

∑

`∈Z

e
− 2π2

Ngs
(`+ Nθ

2π
)2

e−
2πi(L1+L2+L3)

N
`

∑

m∈Z3(N−1)

e
− 2π2

gs
mT M−1

N
m

e−2πim·ξ(Li)

where MN is the matrix in (4.14) .

ii. Degeneracies for N1 > N2 > N3.

When the number of branes is not equal the partition sum ZqY M is substantially more

complicated. By manipulations similar to the ones in appendix B, ZqY M can be written

as:

ZqY M = αθN2+2N3(q)
∑

ν∈SN1

(−)ν
∑

n1∈ZN1

∑

n2∈ZN2

∑

n3∈ZN3

q
1
2
(n2

1−n2
3)qn2·ν(n1)+n3·n2+n3·n1

q−
1
2
n1(ν−1P̂N1|N2

ν)n1q−
1
2
n2P̂N2|N3

n2q−
1
2
n1P̂N1|N3

n1

9For example, ZN−M (θi, gs)ZM (θi, gs) ∼ δ
“

k(θ1 − θ3)
”

×
P

n∈Z
1 × δ

“

k(θ2 − θ3)
”

×
P

n∈Z
1. where

k is the least common divisor of N, M . Using ζ(2s) =
P∞

n=1 1/n2s, where ζ(0) = −
1
2
, we can regularize

P

n∈Z
1 = 0.
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q−ν(n1)·(ρN1
−ρN2

)q−n2·(ρN2
−ρN3

)q−n1·(ρN1
−ρN3

)eiθ1e(N1)·n1+iθ2e(N2)·n2+iθ3e(N3)·n3

where operator P̂N |M projects N -dimensional vector on its first M components.

For example, consider N1 = 3, N2 = 2, N3 = 1. In this case there are six terms in the

sum

ν1 =





1 0 0

0 1 0

0 0 1



 , ν2 =





0 1 0

1 0 0

0 0 1



 , ν3 =





1 0 0

0 0 1

0 1 0





ν4 =





0 0 1

0 1 0

1 0 0



 , ν5 =





0 1 0

0 0 1

1 0 0



 , ν6 =





0 0 1

1 0 0

0 1 0





In this simple case ZqY M has the form

ZqY M = αθ4(q′)

(

π

gs

)2
(

Z1 − Z2 − Z3 − Z4 + Z5 + Z6

)

q′ = e
−π2

gs

where

Zi =

(

2π

gs

)3

det−
1
2M(i)

∑

f∈Z6

e
− 2π2

gs
(f+Λ(i))

T M−1
(i)

(f+Λ(i))

where non-degenerate matrices M(i) for i = 1, . . . 6 are given by

M(1) =



















1 0 0 0 0 0

0 −1 0 1 0 1

0 0 0 0 1 0

0 1 0 −1 0 1

0 0 1 0 0 0

0 1 0 1 0 −1



















, M(2) =



















1 0 0 0 0 0

0 −1 0 1 0 1

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 −1 1

0 1 0 0 1 −1



















M(3) =



















0 0 0 1 0 0

0 −1 0 0 1 1

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 −1 1

0 1 0 0 1 −1



















, M(4) =



















0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

1 0 0 0 −1 1

0 1 0 0 1 −1



















M(5) =



















0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

1 0 0 0 0 0

0 0 1 0 −1 1

0 1 0 0 1 −1



















, M(6) =



















0 0 0 0 1 0

0 −1 0 1 0 1

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 −1 1

0 1 0 0 1 −1



















and vectors Λ(i) for i = 1, . . . , 6 have components

Λ(1) =
1

2π
(θ1, θ1, θ1, θ2, θ2, θ3) +

igs

2π
(2,−

3

2
,−

1

2
,−

1

2
,
1

2
, 0)
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Λa
(2) = Λa

(1), a = 1, . . . , 6

Λ1
(3) =

1

2π
(θ1, θ1, θ1, θ2, θ2, θ3) +

igs

2π
(
1

2
,−

3

2
, 1,

1

2
,−

1

2
, 0)

Λa
(6) = Λa

(3), a = 1, . . . , 6

Λ1
(4) =

1

2π
(θ1, θ1, θ1, θ2, θ2, θ3) +

igs

2π
(
1

2
, 0,−

1

2
,
1

2
,−

1

2
, 0)

Λa
(5) = Λa

(4), a = 1, . . . , 6

5. Branes and black holes on local P1 × P1

For our second example, we will take a noncompact Calabi-Yau threefold X which is a

total space of canonical line bundle K over the base B = P1
B × P1

F

X = K → P1
B × P1

F

where K = O(−2,−2). The linear sigma model whose Higgs branch is X has chiral fields

Xi, i = 0, . . . 4 and two U(1) gauge fields U(1)B and U(1)F under which the chiral fields

have charges (−2, 1, 0, 1, 0) and (−2, 0, 1, 0, 1). The corresponding D-term potentials are

|X1|
2 + |X3|

2 = 2|X0|
2 + rB

|X2|
2 + |X4|

2 = 2|X0|
2 + rF

The H2(X,Z) is generated by two classes [DF ] and [DB ]. Correspondingly, there are two

complexified Kahler moduli tB and tF , tB = rB − iθB and tF = rF − iθF . There are 4

ample divisors invariant under the T 3 torus actions corresponding to setting

Di : Xi = 0, i = 1, 2, 3, 4

We have that [D1] = [D3] = [DB ] and [D2] = [D4] = [DF ]. We take N1 and N2 D4 branes

on D1 and D3, and M1 and M2 D4 branes on D2 and D4 respectively, corresponding to a

divisor

D = N1D1 + M1D2 + N2D3 + M2D4

Since the topology of each Di is O(−2) → P1 we will get four copies of qYM theory of

P1 with ranks N1,2 and M1,2. In addition, from the matter at intersection we get 4 sets of

insertions of observables (3.3) . All together, and assuming N1,2 ≥ M1,2, we have

ZqY M = γ
∑

R1,R2,Q1,Q2

VQ1R1VQ2R2VR1Q2VR2Q1 q
P2

i=1 C2(Ri)+C2(Qi)

eiθB,1C1(R1)+iθB,2C1(R2)eiθF,1C1(Q1)+iθF,2C1(Q2). (5.1)

Above, R1,R2 are representationss of U(N1) and U(N2) and Q1,Q2 are representations

of U(M1) and U(M2), respectively.
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N 2

M
1 M

N 1

2

Figure 4: The base of the local P1 ×P1. The numbers of D4 branes wrapping the torus invariant

non-compact 4-cycles are specified. This corresponds to qYM theory on the neclace of 4 P1’s with

ranks M1, N1, M2, and N2.

In principle, because dim(H2(D,Z)) = 4, there 4 different chemical potentials that we

can turn on for the D2 branes, corresponding to θB,i, θF,i. In X however, there are only

two independent classes, dim(H2(D,Z)) = 2, in particular

[P1
B,1] − [P1

B,2] = 0, [P1
F,1] − [P1

F,2] = 0

We should turn off the chemical potentials for those states that can decay when the YM

theory is embedded in string theory, by putting

θB,1 = θB,2, θF,1 = θF,2. (5.2)

For the most part, we will keep the chemical potentials arbitrary, imposing (5.2) at

the end. The prefactor γ is

γ = q
−(2ρ2

M1
+

M1
12

)

×q
−(2ρ2

M2
+

M2
12

)
q
− 1

96

(

(N1+N2)3+(M1+M2)3−3(N1+N2)2(M1+M2)−3(M1+M2)2(N1+N2)

)

× e
θBθF (N1+N2+M1+M2)

4gs

In the next subsections we will first take the large N limit of the qYM partition

function, and then consider the modular properties of the exact amplitude to compute the

degeneracies of the BPS bound states.

5.1 Black holes on local P1 × P1.

We will now take the large N limit of ZqY M in (5.1) and show that this is related to the

topological string on X in accordance with the [1] conjecture.

i. The N1 = N2 = N = M1 = M2 case.

In this case, we can use the simpler form of the vertex amplitude in (3.12) to write the

q-deformed Yang-Mills partition function as:

ZqY M = γ′
∑

R1,2,Q1,2∈U(N)
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SR1Q̄1
(gs, N)SQ1R̄2

(gs, N)SR2Q̄2
(gs, N)SQ2R̄1

(gs, N)

×ei
P

i θB,iC1(Ri)+iθF,iC1(Qi). (5.3)

where γ′ = γθ4N (q). Using the large N expansion for S-matrix (4.4) and parametrizing

the U(1) charges `Ri
of the representations Ri as follows

2`B = `R1 + `R2 , 2`F = `Q1 + `Q2, 2nB = `R1 − `R2 , 2nF = `Q1 − `Q2, (5.4)

we find that the sum over nB,F gives delta functions

ZqY M (N, gs, θB,i, θF,i) ∼ δ(N(θB,1 − θB,2)) δ(N(θF,1 − θF,2)) Zfinite
qY M (N, gs, θB , θF )

where

Zfinite
qY M ∼

∑

mB ,mF∈Z

∑

P1,...,P4

(−)
P4

i=1 |Pi|

Z+
P1,...,P4

(tB + mBgs, tF + mF gs)

Z+
P T

1 ,...,P T
4

(t̄B − mBgs, t̄F − mF gs) (5.5)

In (5.5) the chiral block Z+
P1,...,P4

(tB , tF ) is given by

Z+
P1,...,P4

(tB , tF ) = Ẑ0(gs, tB , tF )e−t0
P4

i=1 |Pi|
∑

R1,R2,Q1,Q2

e−tB(|R1|+|R2|)e−tF (|Q1|+|Q2|)

×q
1
2

P

i=1,2 κRi
+κQi ĈQT

1 R1P1
(q) ĈRT

2 Q1P2
(q) ĈQT

2 R2P3
(q) ĈRT

1 Q2P4
(q)(5.6)

where Kahler moduli are

tB = gsN − iθB , tF = gsN − iθF .

The leading chiral block Z+
0,...,0 is the closed topological string amplitude on X. The Kahler

moduli of the base P1
B and the fiber P1

F are exactly the right values fixed by the attractor

mechanism: since the divisor D that the D4 brane wraps is in the class [D] = 2N [DF ] +

2N [DB ]. As we discussed in the previous section in detail, the other chiral blocks (5.6)

correspond to having torus invariant non-normalizable modes excited along the four non-

compact toric legs in the normal directions to the base B. Moreover the associated Kahler

parameters should also be fixed by the attractor mechanism – as discussed in the previous

section, we can think of these as the open string moduli corresponding to the ghost branes.

The open string moduli are complexified sizes of holomorphic disks ending on the ghost

branes and these can be computed using the Kahler form on X. Since the net D4 brane

charge is the same as that of −N branes wrapping the base, and the intersection number

of the disks C0 ending on the topological D-branes with the base is #(C0 ∩ B) = 1, so the

size of all the disks ending on the branes should be t0 = −1
2Ngs, which is in accord with

(5.6) . The prefactor in (5.6) is

Ẑ0(gs, tB , tF ) = e
1

24g2
s
(t3F +t3B−3t2F tB−3t2BtF )

M4(q−1)η
tB+tF

gs (q−1)θ
tB+tF

gs (q)
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As discussed before, the eta and theta function pieces contribute only to the genus zero

amplitude, and to the non-perturbative terms.

ii. The general N1,2, M1,2 case.

We will assume here Ni > Mj , i, j = 1, 2. Using the large N , M limit of VRQ(N,M)

with U(1) charges turned off (see Appendix D) we find that the leading chiral block of the

YM partition function is

ZqY M ∼ Z+
0,...,0(tB, tF )Z−

0,...,0(tB, tF )

where Z+
0,...,0(tB, tF ) is precisely the topological closed string partition function on local

P1 ×P1 [15] :

Z+
0,...,0 = Ẑ0

∑

Q+
1 ,Q+

2 ,R+
1 ,R+

2

WQ+
1 R+

1
(q)WQ+

1 R+
2
(q)WQ+

2 R+
1
(q)WQ+

2 R+
2
(q)

×e−tF (|Q+
1 |+|Q+

2 |)e−tB(|R+
1 |+|R+

2 |)

It is easy to see that this agrees with the amplitude given in (5.6) . Moreover, the Kahler

parameters are exactly as predicted by the attractor mechanism corresponding to having

branes on a divisor class

[D] = (N1 + N2)[DB ] + (M1 + M2)[DF ].

Namely,

tB =
1

2
(M1 + M2)gs − iθB , tF =

1

2
(N1 + N2)gs − iθF .

Note that the normal bundle to each of the divisor Di is trivial, so the size of the corre-

sponding P1 in Di = O(−2) → P1 is independent of the number of branes on Di, but it

does depend on the number of branes on the adjacent faces which have intersection number

1 with the P1.

It would be interesting to study the structure of the higher chiral blocks. In this case

we expect the story to be more complicated, in particular because some of the intersection

numbers that compute the attractor values of the brane moduli are now ambiguous.

5.2 Branes on local P1 × P1

We will content ourselves with considering N1,2 = M1,2 = N case, the more general case

working in similar ways to the local P2 case. The partition function (5.3) may be written

as

ZqY M (N, θi, gs) = γ′
∑

w∈SN

(−)w
∑

n1,...,n4∈ZN

qw(n1)·n2+n2·n3+n3·n4+n4·n1 ei
P4

i=1 θie(N)·ni (5.7)
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where e(N) = (1, . . . , 1). As before in the case of local P2, the bound states of N

D4-branes are effectively counted by the ZN term, i.e. the term with w = wN . Like in

that case, ZN is again a sum over sectors of different N -ality,

ZN (θi, gs) = γ′ (−)wN

N−1
∑

L1,...,L4=0
∑

`i∈Z+
Li
N

qN(`1+`3)(`2+`4)eiN
P4

i=1 θi`i

∑

m∈Z4(N−1)+~ξ(Li)

q
1
2
mT Mm

where M is a non-degenerate 4(N − 1) × 4(N − 1) matrix with integer entries and ~ξi is a

shift of the weight lattice corresponding to turning on ’t Hooft flux.

More explicitly,

ξa
i =

N − a

N
Li, i = 1, . . . , 4 a = 0, . . . N − 1

M is 4(N − 1) × 4(N − 1) matrix

M =









0 WN 0 MN

W T
N 0 MN 0

0 MN 0 MN

MN 0 MN 0









(5.8)

whose entries are (N − 1) × (N − 1) matrices

MN =



















2 −1 0 0 . . . 0 0

−1 2 −1 0 . . . 0 0

0 −1 2 −1 . . . 0 0

. . . . . . . . .

. . . . . . . . .

0 0 0 0 . . . −1 2



















(5.9)

and

WN =























−1 2 −1 0 . . . 0 0

0 −1 2 −1 . . . 0 0

0 0 −1 2 . . . . 0

. . . . . . . . .

. . . . . . . . .

0 0 0 0 . . . −1 2

−1 0 0 0 . . . 0 −1























(5.10)

We can express ZN in terms of Θ-functions

ZN (θi, gs) = γ′ (−)wN δ(N(θB,1 − θB,2))δ(N(θF,1 − θF,2))
∑N−1

L1,...,L4=0 Θ2[a(Li), b](τ) Θ4N−4[a(Li),b](τ̂ )

where

Θk[a, b](τ) =
∑

n∈Zk

eπiτ(n+a)2 e2πinb
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kA

Figure 5: N D4-branes are wrapped on Ak type ALE space in Ak × C, for k = 3. The D-brane

partition function is computed by U(N) qYM theory on a chain of 3 P1’s.

and

τ =
igs

2π
N

(

0 1

1 0

)

, τ̂ =
igs

2π
M

and

a = (
L1 + L3

N
,
L2 + L4

N
), b = (

N

2π
θB,

N

2π
θF ) aL = ~ξ(L), b = 0,

To extract black hole degeneracies we use that matrix M is non-degenerate and do modular

S-transformation using

Θ[a, b](τ) = det(τ)−
1
2 e2πiabΘ[b,−a](−τ−1)

After modular S-transformation ZN is brought to the form

ZN (θ, gs) = γ′ δ(N(θB,1 − θB,2))δ(N(θF,1 − θF,2))(−)wN

(

2π
Ngs

) (

2π
gs

)
4(N−1)

2
det−

1
2M

∑N−1
L1,...,L4=0

∑

`,`′∈Z
e−

π2

Ngs
(`+

NθB
2π

)(`′+
NθF
2π

)e−
2πi(L1+L3)

N
`e−

2πi(L2+L4)
N

`′

∑

m∈Z4(N−1) e
− 2π2

gs
mT M−1m

e−2πim·ξ(Li)

6. Branes and black holes on Ak ALE space

Consider the local toric Calabi Yau X which is Ak ALE space times C. This can be thought

of as the limit of the usual ALE fibration over P1 as the size of the base P1 goes to ∞. In

this section we will consider black holes obtained by wrapping N D4 branes on the ALE

space.

This example will have a somewhat different flavor than the previous two, so we will

discuss the D4 brane gauge theory on a bit more detail. On the one hand, the theory

on the D4 brane is a topological U(N) Yang-Mills theory on Ak ALE space which has

been studied previously [23, 10] . On the other hand, the Ak ALE space has T 2 torus

symmetries, so we should be able to obtain the corresponding partition function by an

appropriate computation in the two dimensional qYM theory. We will start with the

second perspective, and make contact with [23][10] later.
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As in [3] and in section 3, our strategy will be to cut the four manifold into pieces

where the theory is simple to solve, and then glue the pieces back together. The Ak type

ALE space can be obtained by gluing together k + 1 copies of C2. Correspondingly, we

should be able to obtain YM amplitudes on the ALE space by sewing together amplitudes

on C2. Moreover, since the C2 and the ALE space have T 2 isometries, the 4d gauge theory

computations should localize to fixed points of these isometries, and these are bundles with

second Chern class localized at the vertices, and first Chern class along the edges.

Viewed as a manifold fibered by 2-tori T 2, C2 has contains two disks, say Cbase and

Cfiber that are fixed by torus action (see figure 2 by way of example). Viewed as a line

bundle over a disk Cbase as a base, the U(1) isometry of the fiber allows us to do some

gauge theory computations in the qYM theory on Cbase. In particular, if the bundle is flat

the qYM partition function on a disk (3.7) with holonomy U = exp (i
∮

A) fixed on the

boundary of the Cbase fixed and no insertions is10

Z(C)(U) =
∑

R

eiθC1(R)S0R(N, gs)TrRU.

What is the four dimensional interpretation of this? The sum over R in the above corre-

sponds to summing over the four dimensional U(N) gauge fields with
∫

fiber
Fa = Ra gs, a = 1, . . . N, (6.1)

where Ra are the lengths of the rows in the Young tableau of R.11 This is because on

the one hand

S0R(N, gs) = 〈 TrR ei
H

A 〉. (6.2)

and on the other
∮

Aa =
∫

base Fa is conjugate to Φa =
∫

fiber Fa, so inserting (6.2) shifts F

as in (6.1) . The unusual normalization of F has to do with the fact that qYM directly

computes the magnetic, rather than the electric partition function: In gluing two disks to

get an P1 we sum over all R’s labelling the bundles of the S-dual theory over the P1.

If we are to use 2d qYM theory to compute the N = 4 partition function on ALE

space, we must understand what in the 2d language is computing the partition function

on C2 with ∫

fiber
Fa = Ra gs,

∫

base
Fa = Qa gs, a = 1, . . . N, (6.3)

since clearly, what we call the “base” here versus the “fiber” is a matter of convention.

Using once more the fact that Φ and
∮

A are conjugate, turning on
∫

base Fa = Qags

corresponds to inserting TrQ e−iΦ at the point on Cbase where it intersects Cfiber. Thus,

turning on (6.3) corresponds to computing 〈TrQe−iΦ TrR ei
H

A 〉. This is an amplitude we

already know:

SQR(N, gs) = 〈TrQe−iΦ TrRei
H

A 〉. (6.4)

10More precisely, as we explained in section 3, the coordinate U is ambiguous since the choice of cycle

which remains finite is ambiguous. This ambiguity relates to the choice of the normal bundle to the disk,

and the present choice corresponds to picking this bundle to be trivial, which is implicit in the amplitude.
11To be more precise, Ra in (6.1) is shifted by 1

2
(N + 1) − a.
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Alternatively, the amplitude on C2 with arbitrary boundary conditions (6.3) on the

base and on the fiber is
∑

R,Q

SRQ(N, gs) TrRU TrQV (6.5)

We then glue the pieces together using the usual local rules. The only thing we have

to remember is that the normal bundle to each P1 is O(−2), and that at the “ends” we

should turn the fields off. In computing (6.4) we used the coordinates in which C2 is a

trivial fibration over both Cfiber and Cbase, and therefore to get the first Chern class of

the normal bundle to come out to be −2, we must along each of them insert annuli with

O(−2) bundle over them. This gives:

Z =
∑

R1...Rk

S0R(1)
SR(1)R(2)

. . . SR(k)0 q
P

C2(R(j)) ei
P

θj |R(j)|, (6.6)

There is one independent θ angle for each P1 corresponding to the fact that they are

all independent in homology. These θ angles will get related to chemical potentials for the

D2 branes wrapping the corresponding 2-cycles.

6.1 Modularity

The S-duality of N = 4 Yang Mills acts on our partition function as gs → 4π2

gs
. By

performing this modular transformation we will be able to read off the degeneracies of the

BPS bound states contributing to the entropy. First, using the definition of the Chern

Simons S-matrix, we find that

Z =
∑

ω∈W

(−1)ω
∑

n1,...nk∈ZN

qn2
1+...+n2

k−n1n2−...−nk−1nk eiθ1|n1|+...θk |nk|qρn1+nkω(ρ) (6.7)

Note the appearance of the intersection matrix of Ak ALE space. The fact that the

Cartan matrix appears gives the k vectors U(N) weight vectors na
i i = 1, . . . k, a = 1, . . . N

an alternative interpretation as N SU(k) root vectors:

Z =
∑

ω∈W

(−1)ω
N
∏

a=1

∑

na∈ΛRoot
SU(k)

q
1
2
nana eiθnaq(ρ+ω(ρ))ana

where θ is a k-dimensional vector with entries θi. From the above, it is clear that Z is a

product of N SU(k) characters at level one. Recall that the level one characters are

χ
(1)
λ (τ, u) =

θ
(1)
λ (τ, u)

ηk(τ)

where

θ
(1)
λ (τ, u) =

∑

n∈ΛRoot
SU(k)

eπiτ(n+λ)2+2πi(n+λ)u

To be concrete, our amplitude is given as follows:

Z = η(q)Nk
∑

ω∈W

(−1)ω
N
∏

a=1

χ
(1)
0 (τ, ua(θ, ω))
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Here,

τ =
igs

2π
, ua

i (θ, ω) =
θi

2π
+

igs

2π
(ρ + ω(ρ))a

Modular transformations act on the space of level one characters as:

θ(1)
η (−

1

τ
,
u

τ
) = e−

uu
2τ

∑

ω∈Wk

(−1)ω
∑

λ

e
2πi
k+1

ω(η+ρ)(λ+ρ)θ
(1)
λ (τ, u),

consequently, the dual partition function also has an expansion in terms of N level one

characters. The product of N level one characters can be expanded in terms of sums of

level N characters, so this is consistent with the results of H. Nakajima. The fact that

the partition function is a sum over level N characters, rather than a single one is natural

given that we impose different boundary conditions at the infinity of ALE space from [23]

.

6.2 The large N limit

In the ’t Hooft large N expansion, using (4.4) , we find that the partition function (6.7)

can be written as follows:

ZALE =
∑

P1,...,Pk+1

(−)|P1|+...|Pk+1|
∑

m1,...,mk∈Z

Z+
P1,..,Pk+1

(t1 + m1gs, . . . , tk + mkgs) Z+
P T

1 ,..,P T
k+1

(t̄1 − m1gs, . . . , t̄k − mkgs),

where m’s are related to the U(1) charges of representations Ri as mi = 2`i − `i−1 − `i+1,

for i = 1, . . . , k (where `0 = `k+1 = 0). The Kahler moduli are

tj = − i θj , j = 1, . . . , k,

which is what attractor mechanism predicts: Since ALE space has vanishing first Chern

class, the normal bundle of its embedding in a Calabi-Yau three-fold is trivial, and con-

sequently #[DAk
∩ C] = 0 where DAk

is (N times) the divisor corresponding to the ALE

space and C is any curve class in X.

The normalization constant αALE in (6.7) was determined by requiring the large N

limit factorizes in the appropriate way.

αALE = q(k+1)(ρ2+ N
24

)e
N
2gs

θT Aθ, (6.8)

where A is the inverse of the intersection matrix of ALE.

The chiral block in the chiral(anti-chiral) decomposition of ZALE has the form

Z+
P1,...,Pk+1

(t1, . . . , tk) = M(q)
k+1
2 e

−
t0 tT A t

2g2
s

+
π2(k+1)t0

6g2
s e−t0

Pk+1
d=1 |Pd|×

×
∑

R1...Rk

Ĉ0R1
T P1

qκR1
/2e−t1|R1|ĈR1R2

T P2
qκR2

/2e−t2|R2| . . . ĈRk0Pk+1
.
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where

t0 =
1

2
Ngs. (6.9)

We see that the trivial chiral block Z+
0,...,0(t1, . . . , tk) is exactly the topological string

partition function on ALE, in agreement with the conjecture of [1] . Moreover, the higher

chiral blocks correspond to having k + 1 sets of topological “ghost“ branes in the C di-

rection over the north and the south poles of the P1’s. The associated moduli, i.e. the

size of the holomorphic disks ending on the topological ghost branes is also fixed by the

attractor mechanism, to be #(DAk
∩ Cdisk) = N . This is gives exactly (6.9) as the value

of the corresponding Kahler moduli t0, in agreement with the conjecture. As we discussed

in section 4, in the closed string language, these are the non-normalizable modes in the

topological string on X. The classical piece of the topological string amplitude

1

2g2
s

t0 tT At (6.10)

deserves a comment. Because X = Ak ×C, taking only the compact cohomology the triple

intersection numbers would unambiguously vanish. The non-vanishing triple intersection

numbers can be gotten only by a suitable regularization of the C factor. This was already

regularized, in terms of the Kahler modulus t0 of the non-normalizable modes – which

exactly give the measure of the size of the disk, i.e. C, making (6.10) a natural answer.12
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A. Conventions and useful formulas

The S matrix is given by

SRQ(N, gs) =
∑

w∈SN

(−)wq−w(R+ρN )·(Q+ρN )

where q = exp(−gs), and ρa
N = N−2a+1

2 , for a = 1, . . . , N. Note that while the ex-

pression for SRQ looks like that for the S-matrix of the U(N) WZW model, unlike in

12What is less natural is the appearance of the inverse intersection matrix of ALE. However, one has to

remember that this is a non-compact Calabi-Yau, where intersection numbers are inherently ambiguous.
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WZW case, gs is not quantized. Using Weyl denominator formula TrRx =
∏

i<j(xi −

xj)
∑

w∈SN
(−)wxw(R+ρN ), the S-matrix can also be written in terms of Schur functions

sR(x1, . . . , xN ) = TrRx of N variables.

SRQ/S00(gs, N) = sR(q−ρN−Q)sQ(q−ρN ).

Above, x is an N by N matrix with eigenvalues xi, i = 1, . . . N , as

The S matrix has following important properties:

SR̄Q(N, gs) = SRQ(N,−gs) = S−1
RQ(N, gs)

The first follows since (up to a sign that is +1 if N is odd and −1 if N is even), Q̄+ ρN =

−ωN (Q + ρN ) where ωN is the permutation that maps a → N − a + 1 for a = 1, . . . , N.

The second is easily seen by computing

∑

P SRP(N,−gs)SPQ(N, gs) =
∑

w∈SN
(−)w

∑

n∈ZN qw(ρN+R)·nq−n·(ρN+Q)

=
∑

w∈SN
(−)wδ(N) (w(ρN + R) − (ρN + Q)) = δRQ.

where we absorbed one sum over the Weyl group into the unordered vector, n. Note that

(ρN + R)a and (ρN + Q)a are decreasing in a, so the delta function can only be satisfied

when w = 1.

The large N limit of the S matrix for coupled representations R = R+R̄−[`R], Q =

Q+Q̄−[`Q] is given in (4.4) in terms of the topological vertex amplitude

ĈRQP (q) = CRQP (q−1), CRQP (q) = q
κR
2 sP (qρ)

∑

η

sRt/η(q
P+ρ)sQ/η(q

P t+ρ)

This has cyclic symmetry ĈPQR = ĈQRP , and using the properties of the Schur func-

tions under q → q−1: sR(qQ+ρ) = (−1)|R|sRT (q−QT−ρ) also a symmetry under inversion:

ĈRQP (q−1) = (−)|R|+|Q|+|P |ĈRtQtP t(q). The leading piece of S in the large N limit is

significantly simpler than (4.4) . Since Ĉ0RQ(q) = (−)|R|+|Q|WRT Q(q)q−
1
2
κQ we have:

SRQ(gs, N) = (−)|R+|+|Q+|+|R−|+|Q−|q−N`R`Qq−`R(|Q+|−|Q−|)q−`Q(|R+|−|R−|)

WR+Q+(q)WR−Q−(q)q−
N
2

(|R+|+|R−|+|Q+|+|Q−|)

where

WRQ(q) = sR(qρ+Q)sQ(qρ)

where ρ = −a + 1
2 , for a = 1, . . . ,∞.

B. Quantum Yang-Mills amplitudes with observable insertions

Consider the U(N) q-deformed YM path integral on the cap. As shown in [3] this is given

by

ZqYM(C)(U) =
∑

R

S0RTrRU.
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The Fourier transform to the Φ basis is given by the following path integral over the

boundary of the disk,

ZqYM(C)(U) =

∫

dHΦ e
1

gs
TrΦ

H

A ZqYM(C)(Φ).

Since the qYM path integral localizes to configurations where Φ is covariantly constant,so

in particular Φ and A commute, integrating over the angles gives13

ZqYM(C)(~u) =

∫

∏

i

dφi
∆H(φ)

∆H(u)
e

1
gs

P

i
~φ·~u ZqYM(C)(~φ),

where we defined a hermitian matrix u by U = eiu, and

∆H(φ) =
∏

1≤i<j≤N

2sin[(φi − φj)/2] =
∏

α>0

2 sin(~α · ~φ).

comes from the hermitian matrix measure over ~φ by adding images under ~φ → ~φ+ 2π~n, to

take into account the periodicity of Φ.

Now, in the Φ basis, the path integral on the disk with insertion of TrQeiΦ is simply

given by:

Z(C, TrQeiΦ)(Φ) = TrQeiΦ

since Φ is a multiplication operator in this basis. Transforming this to U -basis, we use

TrQeiΦ := χQ(~φ) =

∑

ω∈SN
(−1)ωeiω( ~Q+~ρ)·~φ

∑

ω∈SN
(−1)ωeiω(~ρ)·~φ

,

where SN is the Weyl group and ~ρ is the Weyl vector. We also use the Weyl denominator

formula
∏

α>0

sin(~α · ~φ) =
∑

ω∈SN

(−1)ωeiω(~ρ)·~φ.

Plugging this into the integral, and performing a sum over the weight lattice we get

Z(C, TrQeiΦ)(U) =
1

∆H(u)

∑

ω∈W

(−1)ωδ(~u + igsω(~ρ + ~Q))

We can extract the coefficient of this in front of TrRU by computing an integral
∫

dUZ(C, TrQeiΦ)(U)TrRU−1

which easily gives

Z(C, TrQeiΦ)(U) =
∑

R

SRQ̄(gs, N)TrRU.

13There was an error in [3] where the denominator 1/∆H (u) was dropped. In that case this only affected

the definition of the wave function (whether one absorbs the determinant ∆H(φ) into the wave function of

φ or not), but here we need the correct expresion. This normalization follows from [24] where the matrix

model for a pair of commuting matrices with haar measure was first discussed.
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where

SRQ̄(gs, N) =
∑

ω

qω(Q+ρ)·(R+ρ)

in terms of q = e−gs .

Another expectation value we need is of

Z(C, TrQeiΦ−in
H

A)(U)

We can compute this by replacing Φ by Φ′ = Φ−n
∮

A everywhere. The only difference is

that we must now transform from Φ − n
∮

A basis (with
∮

A as a momentum) where the

computations are simple to
∮

A basis with Φ as a momentum, and this is done by

Z2dYM(C)(U) =

∫

dΦ′ e
1
gs

TrΦ′u+ n
2gs

Tru2

Z2dYM(C)(Φ′).

This gives

Z(C, TrQeiΦ−in
H

A)(U) =
∑

R

q
n
2
C2(Q)SQ̄RTrRU

C. Modular transformations

C.1 The vertex amplitude

Consider the vertex amplitude corresponding to intersecting D4 branes:

Z(U, V ) =
∑

R∈U(N),Q∈U(M)

VRQ(N,M)TrRUTrQV

where

VRQ =
∑

P∈U(M)

q
C

(M)
2 (P)

2 SRP(gs, N)SPQ(−gs,M)

Using the definition (3.8) of SRQ and the Weyl-denominator form of the U(N) characters

Z(U, V ) becomes:

Z(U, V ) =
1

∆H(u)∆H(v)

∑

w1,w3∈SN

∑

w′
3,w2∈SM

(−)w1+w2+w3+w′
3q

||P+ρM ||2

2

q(P+ρM )·w′
3(Q+ρM )q−(P+ρN )·ω3(R+ρN )eiw1(R+ρN )·ue(Q+ρM )·w2(iv)

We can trade the sums over the Weyl groups, for sums over the full weight lattices: Put

w2 = w−1
Q , w′

3 = w−1
P wQ,

this defines elements wP , wQ ∈ SM uniquely given w2, w
′
3. Then, we can always find an

element wR ∈ SN such that

w3 = w−1
P wR,
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for a given w3, by simply viewing wP as an element of SN acting on first M entries of any

N dimensional vector, leaving the others fixed. Finaly, find an w ∈ SN such that

w1 = w−1wR,

Note now that

ωP (P + ρN ) = ωP (P + ρM ) + ρN − ρM

since ωP acts only on first M entries of a vector and the first M entries of ρN − ρM are

all equal, hence invariant under ωP . Using this and the fact that now only permutations

w are counted with alternating signs, we can combine the sums ofer the weyl-groups with

the sums over the lattices to write:

Z(U, V ) = ∆H(u)−1∆H(v)−1
∑

w∈SN

(−)w
∑

m,p∈ZM ; n∈ZN

q
p2

2 qp·mq−(p+ρN−ρM )·nein·w(u)eim·v

Now split n = (n′, n′′) where n′ is the first M entries in n, n′′ the remaining N − M , and

similarly put ρN − ρM = (ρ′, ρ′′), where we have treated ρM as N dinemsional vector first

M entries of which is the standard Weyl vector of U(M), the remaining being zero, and

u = (u′, u′′). If one in addition defines m′ = m − n′ above becomes

Z(U, V ) = θM (q)∆H(u)−1∆H(v)−1
∑

w∈SN

(−)w
∑

m′∈ZM

q
−(m′)2

2 eim′·v

∑

n′∈ZM

∑

n′′∈ZN−M

q−ρ′·n′−ρ′′·n′′
en′(·w(iu′)+iv)+n′′·ω(iu′′) (C.1)

where θ(q) =
∑

n∈Z
q

n2

2 is the usual theta function. We write n again as an N−dimensional

vector (n′, n′) = n to get our final expression

Z(U, V )=θ(q)M∆H(u)−1∆H(v)−1
∑

m′∈ZM

q−
(m′)2

2 eim′·v
∑

w∈SN

(−)wδ(iv+w(iu)+(ρN −ρM )gs)

where v, ρM are regarded as N dimensional vectors (v, 0N−M ), (ρM , 0N−M ).

D. Large N limit of the vertex amplitude

Here we find the large N, M limit of the interaction

VRQ =
∑

P

SRP(N, gs) q
C

(M)
2

(P)

2 SP̄Q(M,gs)

(we’ve dropped an overall factor). Using TS−1 = θ(q)MS−1T−1S−1T−1 in the U(M)

factor, this can be done by computing first the large N, M limit of

∑

P

SRP(N, gs)SP̄A(M,gs)
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and then using large M limit of (TST )−1
AQ to get the full amplitude. In general, either

version of the problem is very difficult and at present unsolved. Things simplify significantly

if we turn off the U(1) charges all together. This means we will effectively compute the

SU(N) rather than U(N) version of interaction. It will turn out that the crucial features

that one expects from the amplitudes assuming the conjecture holds, are unaffected by

this. In this case, the representations R are effectively labeled by Young tableaux’s.

From the free fermion description of the Y M amplitudes it follows easily [25] that:

∑

P∈U(M)

SRP(gs, N)SP̄A(gs,M) → α−1
N (q)α−1

M (q) S0(R+R̄−)(gs, N)S0(A+Ā−)(gs,M)

×
∞
∏

i,j=1

[12N − 1
2M + j − i]

[R+
i − A+

j + 1
2N − 1

2M + j − i]

[12N − 1
2M + j − i]

[R−
i − A−

j + 1
2N − 1

2M + j − i]

×
∞
∏

i,j=1

[12N + 1
2M − j − i + 1]

[R+
i + A−

j + 1
2N + 1

2M − j − i + 1]

[12N + 1
2M − j − i + 1]

[R−
i + A+

j + 1
2N + 1

2M − j − i + 1]
(D.1)

where the arrow indicates taking large N, M limit and where αN (q) = q−(ρ2
N+ N

24
)M(q)×

ηM (q), and similarly for αM with M,N exchanged.

For simplicity, we will be are interested only in the leading chiral block of the amplitude

which determines the Calabi-Yau manifold that the YM theory describes in the large N

limit, and neglects the excitations of non-normalizable modes. In this limit, the piece

S0(R+R̄−)(gs)S0(A+Ā−)(gs) gives

αM (q)αN (q)WAT
+0(q)WAT

−0(q)WRT
+0(q)WRT

−0(q)q
−

M(|A+|+|A−|)

2 q−
N(|R+|+|R−|)

2

where WRP (q) = sR(qρ)sP (qR+ρ), and moreover WR0(q) = (−)|R|qkR/2WRT 0(q). Of the

infinite product terms, in the leading chiral block limit only the second row in (D.1) con-

tributes. This is because the interactions between the chiral and anti-chiral part of the

amplitude are supressed in this limit. Using

∏

i,j

1

xi − yj
=

∏

i

x−1
i

∑

R

sR(x−1)sR(y)

we get

const. ×
∑

P+,P−

sP+(qR++ρ)sP+(q−(A++ρ))sP−(qR−+ρ)sP−(q−(A−+ρ))q(|P+|+|P−|)N−M
2

The constant comes from regularizing the infinite products (see [25] for details) and can

be determined by computing the leading large N , M scaling

∏

(i,j)∈A+

[ 1
2
N− 1

2
M−j+i]

[− 1
2
N− 1

2
M−j+i]

∏

(i,j)∈A−

[ 1
2
N− 1

2
M−j+i]

[− 1
2
N− 1

2
M−j+i]

∏

(i,j)∈R+

[ 1
2
N− 1

2
M+j−i]

[ 1
2
N+ 1

2
M+j−i]

∏

(i,j)∈R−

[ 1
2
N− 1

2
M+j−i]

[ 1
2
N+ 1

2
M+j−i]

∼ q
κA+

+κA−
2 q

M(|R+|+|R−|+|A+|+|A−|)

2
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where i goes over the rows and j over the columns. All together, this gives

∑

P∈U(M) SRP(gs, N)SP̄A(gs,M) → (−)|R+|+|R−|q−
N−M

2
(|R+|+|R−|)q−

κR+
+κR−
2 q

κA+
+κA−
2

∑

P+
(−)|P+|WR+P+(q)WP T

+ AT
+
(q)q

N−M
2

|P+|

∑

P−
(−)|P−|WR−P−(q)WP T

−AT
−
(q)q

N−M
2

|P−|

Next, recall that (see appendix A) the large M limit (more precisely, the leading chiral

block) of (TST )−1 is

(T−1S−1T−1)AQ = αM (q−1)WA+Q+(q)WA−Q−(q)q−
κA+

+κA−
+κQ+

+κQ−
2

To compute our final expression, we need to sum:

∑

P

SRP(N, gs) q
C

(M)
2 (P)

2 SP̄Q(M,gs) → αM (q−1)(−)|R+|+|R−|q−
N−M

2
(|R+|+|R−|)

q−
κR+

+κQ+
2

∑

P+,A+

(−)|P+|WR+P+(q)WP T
+ AT

+
(q)WA+Q+(q)q

N−M
2

|P+|

q−
κR−

+κQ−
2

∑

P−,A−

(−)|P−|WR−P−(q)WP T
−AT

−
(q)WA−Q−(q)q

N−M
2

|P−|.

Note that this contains an ill-defined expression

∑

A+

WP T
+ AT

+
(q)WQ+A+(q)

∑

A−

WP T
−AT

−
(q)WQ−A−(q) (D.2)

The physical interpretation of a finite version of this amplitude, with insertions of

e−t|A+| and e−t̄|A−| also suggests how to define (D.2) . Namely, the finite amplitude is the

topological string amplitude (more precisely, two copies of it) on O(−1) ⊕ O(−1) → P1

with D-branes as in the figure, where the size of the P1 is t.

In the limit t → 0 the P1 shrinks to zero size, and one can undergo a conifold transition,

to a small S3 of size ε. In this case, the only holomorphic maps correspond to those with

P+ = Q+, so that
∑

A+

WP T
+ AT

+
(q)WQ+A+(q) = δ(P+ − Q+),

and similarlty for the anti-chiral piece, which is independent of ε, as this is a complex

structure parameter. Our final result is:

∑

P

SRP(N, gs) q
C

(M)
2

(P)

2 SP̄Q(M,gs) → αM (q−1) θM (q) (−)|R+|+|R−|+|Q+|+|Q−|

q−
N−M

2
(|R+|+|R−|)q

N−M
2

(|Q+|+|Q−|)q−
κR+

+κR−
2 q−

κQ+
+κQ−
2 WR+Q+(q)WR−Q−(q) (D.3)
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 P+

 P+Q

P

Q

+

+ + =

t

Figure 6: The figure on the left corresponds to O(−1) ⊕ O(−1) → P1 with P1 of size t with two

stacks of lagrangian D-branes. The representations P+ and Q+ label the boundary conditions on

open string maps. When t = 0 the Calabi-Yau is singular, but can be desingularized by growing

a small S3. The singular topological string amplitudes can be regulated correspondingly, and with

this regulator, they vanish unless P+ = Q+. See [26] for more details.
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